Discovering Temporal Communities from Social Network Documents

This paper studies the discovery of communities from social network documents produced over time, addressing the discovery of temporal trends in community memberships. We first formulate static community discovery at a single time period as a tripartite graph partitioning problem. Then we propose to discover the temporal communities by threading the statically derived communities in different time periods using a new constrained partitioning algorithm, which partitions graphs based on topology as well as prior information regarding vertex membership. We evaluate the proposed approach on synthetic datasets and a real-world dataset prepared from the CiteSeer.

[1]  Xiang Ji,et al.  Document clustering with prior knowledge , 2006, SIGIR.

[2]  Tie-Yan Liu,et al.  Consistent bipartite graph co-partitioning for star-structured high-order heterogeneous data co-clustering , 2005, KDD '05.

[3]  Stanley Wasserman,et al.  Social Network Analysis: Methods and Applications , 1994, Structural analysis in the social sciences.

[4]  Gene H. Golub,et al.  Matrix computations , 1983 .

[5]  Hongyuan Zha,et al.  Probabilistic models for discovering e-communities , 2006, WWW '06.

[6]  Matthew Richardson,et al.  Mining the network value of customers , 2001, KDD '01.

[7]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Yiming Yang,et al.  Stochastic link and group detection , 2002, AAAI/IAAI.

[9]  Jon M. Kleinberg,et al.  Group formation in large social networks: membership, growth, and evolution , 2006, KDD '06.

[10]  Bernardo A. Huberman,et al.  Email as spectroscopy: automated discovery of community structure within organizations , 2003 .

[11]  Bernardo A. Huberman,et al.  E-Mail as Spectroscopy: Automated Discovery of Community Structure within Organizations , 2005, Inf. Soc..

[12]  Ming Gu,et al.  Spectral min-max cut for graph partitioning and data clustering , 2001 .

[13]  Ramanathan V. Guha,et al.  Information diffusion through blogspace , 2004, SKDD.

[14]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[15]  Inderjit S. Dhillon,et al.  Information-theoretic co-clustering , 2003, KDD '03.

[16]  Ulrike von Luxburg,et al.  A tutorial on spectral clustering , 2007, Stat. Comput..

[17]  Carl Gutwin,et al.  Domain-Specific Keyphrase Extraction , 1999, IJCAI.

[18]  Chris H. Q. Ding,et al.  Bipartite graph partitioning and data clustering , 2001, CIKM '01.

[19]  Jiawei Han,et al.  Mining scale-free networks using geodesic clustering , 2004, KDD.

[20]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[21]  Chris H. Q. Ding,et al.  Spectral Relaxation for K-means Clustering , 2001, NIPS.

[22]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  David Harel,et al.  Clustering spatial data using random walks , 2001, KDD '01.

[24]  Alex Pothen,et al.  PARTITIONING SPARSE MATRICES WITH EIGENVECTORS OF GRAPHS* , 1990 .