xtroem-fv: a new code for computational astrophysics based on very high order finite-volume methods – II. Relativistic hydro- and magnetohydrodynamics

[1]  R. LeVeque,et al.  Numerical Methods for Conservation Laws: From Analysis to Algorithms , 2017 .

[2]  Claus-Dieter Munz,et al.  xtroem-fv: a new code for computational astrophysics based on very high order finite-volume methods – I. Magnetohydrodynamics , 2016 .

[3]  E. Müller,et al.  Grid-based Methods in Relativistic Hydrodynamics and Magnetohydrodynamics , 2015, Living reviews in computational astrophysics.

[4]  Florent Duchaine,et al.  Analysis of high performance conjugate heat transfer with the OpenPALM coupler , 2015 .

[5]  Michael Dumbser,et al.  Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement , 2015, 1504.07458.

[6]  Christiane Helzel,et al.  Improved Accuracy of High-Order WENO Finite Volume Methods on Cartesian Grids , 2014, Journal of Scientific Computing.

[7]  Michael Dumbser,et al.  A high order special relativistic hydrodynamic and magnetohydrodynamic code with space-time adaptive mesh refinement , 2013, Comput. Phys. Commun..

[8]  Rémi Abgrall,et al.  High‐order CFD methods: current status and perspective , 2013 .

[9]  Jian Zhao,et al.  Runge-Kutta discontinuous Galerkin methods with WENO limiter for the special relativistic hydrodynamics , 2013, J. Comput. Phys..

[10]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[11]  L. Rezzolla,et al.  THC: a new high-order finite-difference high-resolution shock-capturing code for special-relativistic hydrodynamics , 2012, 1206.6502.

[12]  Rony Keppens,et al.  Parallel, grid-adaptive approaches for relativistic hydro and magnetohydrodynamics , 2012, J. Comput. Phys..

[13]  Luciano Rezzolla,et al.  Discontinuous Galerkin methods for general-relativistic hydrodynamics: formulation and application to spherically symmetric spacetimes , 2011, 1103.2426.

[14]  James M. Stone,et al.  A SECOND-ORDER GODUNOV METHOD FOR MULTI-DIMENSIONAL RELATIVISTIC MAGNETOHYDRODYNAMICS , 2011, 1101.3573.

[15]  Lorenzo Pareschi,et al.  Implicit-explicit runge-kutta schemes and applications to hyperbolic systems with relaxation , 2010, 1009.2757.

[16]  Bertram Taetz,et al.  An unstaggered constrained transport method for the 3D ideal magnetohydrodynamic equations , 2010, J. Comput. Phys..

[17]  Andrea Mignone,et al.  High-order conservative finite difference GLM-MHD schemes for cell-centered MHD , 2010, J. Comput. Phys..

[18]  Universitat d'Alacant,et al.  RELATIVISTIC MAGNETOHYDRODYNAMICS: RENORMALIZED EIGENVECTORS AND FULL WAVE DECOMPOSITION RIEMANN SOLVER , 2009, 0912.4692.

[19]  Andrea Mignone,et al.  A second-order unsplit Godunov scheme for cell-centered MHD: The CTU-GLM scheme , 2009, J. Comput. Phys..

[20]  Andrea Mignone,et al.  A five‐wave Harten–Lax–van Leer Riemann solver for relativistic magnetohydrodynamics , 2009 .

[21]  Chi-Wang Shu,et al.  High Order Strong Stability Preserving Time Discretizations , 2009, J. Sci. Comput..

[22]  Chi-Wang Shu,et al.  High Order Weighted Essentially Nonoscillatory Schemes for Convection Dominated Problems , 2009, SIAM Rev..

[23]  Michael Dumbser,et al.  A unified framework for the construction of one-step finite volume and discontinuous Galerkin schemes on unstructured meshes , 2008, J. Comput. Phys..

[24]  P. Teuben,et al.  Athena: A New Code for Astrophysical MHD , 2008, 0804.0402.

[25]  J. Hesthaven,et al.  Nodal Discontinuous Galerkin Methods: Algorithms, Analysis, and Applications , 2007 .

[26]  Michael Dumbser,et al.  Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems , 2007, J. Comput. Phys..

[27]  J. Ollitrault,et al.  Relativistic hydrodynamics for heavy-ion collisions , 2007, 0708.2433.

[28]  O. Zanotti,et al.  ECHO: a Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics , 2007, 0704.3206.

[29]  Jonathan C. McKinney,et al.  WHAM : a WENO-based general relativistic numerical scheme -I. Hydrodynamics , 2007, 0704.2608.

[30]  A. Mignone,et al.  Equation of state in relativistic magnetohydrodynamics: variable versus constant adiabatic index , 2007, 0704.1679.

[31]  Michael Dumbser,et al.  Arbitrary high order non-oscillatory finite volume schemes on unstructured meshes for linear hyperbolic systems , 2007, J. Comput. Phys..

[32]  A. Ferrari,et al.  PLUTO: A Numerical Code for Computational Astrophysics , 2007, astro-ph/0701854.

[33]  Orhan Dönmez,et al.  Solving 1-D special relativistic hydrodynamics (SRH) equations using different numerical methods and results from different test problems , 2006, Appl. Math. Comput..

[34]  D. Ryu,et al.  Equation of State in Numerical Relativistic Hydrodynamics , 2006, astro-ph/0605550.

[35]  David Neilsen,et al.  Relativistic MHD with adaptive mesh refinement , 2006, gr-qc/0605102.

[36]  R. Kayali,et al.  Simulation of astrophysical jet using the special relativistic hydrodynamics code , 2006, Appl. Math. Comput..

[37]  A. Mignone,et al.  An HLLC Riemann solver for relativistic flows – II. Magnetohydrodynamics , 2006, astro-ph/0601640.

[38]  C. Gammie,et al.  Primitive Variable Solvers for Conservative General Relativistic Magnetohydrodynamics , 2005, astro-ph/0512420.

[39]  Sigal Gottlieb,et al.  On High Order Strong Stability Preserving Runge–Kutta and Multi Step Time Discretizations , 2005, J. Sci. Comput..

[40]  INFN,et al.  The exact solution of the Riemann problem in relativistic magnetohydrodynamics , 2005, Journal of Fluid Mechanics.

[41]  D. Ryu,et al.  Numerical relativistic hydrodynamics based on the total variation diminishing scheme , 2005, astro-ph/0507090.

[42]  G. Bodo,et al.  An HLLC Riemann solver for relativistic flows ¿ I. Hydrodynamics , 2005, astro-ph/0506414.

[43]  M. Aloy,et al.  Relativistic MHD simulations of extragalactic jets , 2005 .

[44]  A. MacFadyen,et al.  RAM: A Relativistic Adaptive Mesh Refinement Hydrodynamics Code , 2005, astro-ph/0505481.

[45]  G. Bodo,et al.  The Piecewise Parabolic Method for Multidimensional Relativistic Fluid Dynamics , 2005, astro-ph/0505200.

[46]  Eleuterio F. Toro,et al.  ADER schemes for three-dimensional non-linear hyperbolic systems , 2005 .

[47]  Eleuterio F. Toro,et al.  Finite-volume WENO schemes for three-dimensional conservation laws , 2004 .

[48]  Steven J. Ruuth,et al.  Non-linear evolution using optimal fourth-order strong-stability-preserving Runge-Kutta methods , 2003, Math. Comput. Simul..

[49]  Neil Ashby,et al.  Relativity in the Global Positioning System , 2003, Living reviews in relativity.

[50]  Steven J. Ruuth,et al.  Two Barriers on Strong-Stability-Preserving Time Discretization Methods , 2002, J. Sci. Comput..

[51]  R. LeVeque Finite Volume Methods for Hyperbolic Problems: Characteristics and Riemann Problems for Linear Hyperbolic Equations , 2002 .

[52]  N. Bucciantini,et al.  An efficient shock-capturing central-type scheme for multidimensional relativistic flows. II. Magnetohydrodynamics , 2002, astro-ph/0205290.

[53]  Steven J. Ruuth,et al.  A New Class of Optimal High-Order Strong-Stability-Preserving Time Discretization Methods , 2002, SIAM J. Numer. Anal..

[54]  C. Munz,et al.  Hyperbolic divergence cleaning for the MHD equations , 2002 .

[55]  G. Tóth The ∇·B=0 Constraint in Shock-Capturing Magnetohydrodynamics Codes , 2000 .

[56]  Chi-Wang Shu,et al.  Monotonicity Preserving Weighted Essentially Non-oscillatory Schemes with Increasingly High Order of Accuracy , 2000 .

[57]  E. Mueller,et al.  The exact solution of the Riemann problem with non-zero tangential velocities in relativistic hydrodynamics , 2000, Journal of Fluid Mechanics.

[58]  E. Müller,et al.  Numerical Hydrodynamics in Special Relativity , 1999, Living reviews in relativity.

[59]  P. Londrillo,et al.  High-Order Upwind Schemes for Multidimensional Magnetohydrodynamics , 1999, astro-ph/9910086.

[60]  M. Aloy,et al.  An efficient implementation of flux formulae in multidimensional relativistic hydrodynamical codes , 1999, astro-ph/9904195.

[61]  Guang-Shan Jiang,et al.  A High-Order WENO Finite Difference Scheme for the Equations of Ideal Magnetohydrodynamics , 1999 .

[62]  E. Muller,et al.  GENESIS: A High-Resolution Code for Three-dimensional Relativistic Hydrodynamics , 1999, astro-ph/9903352.

[63]  D. Balsara,et al.  A Staggered Mesh Algorithm Using High Order Godunov Fluxes to Ensure Solenoidal Magnetic Fields in Magnetohydrodynamic Simulations , 1999 .

[64]  S. Komissarov,et al.  A Godunov-type scheme for relativistic magnetohydrodynamics , 1999 .

[65]  Rosa Donat,et al.  A Flux-Split Algorithm applied to Relativistic Flows , 1998 .

[66]  A. Frank,et al.  A Divergence-free Upwind Code for Multidimensional Magnetohydrodynamic Flows , 1998, astro-ph/9807228.

[67]  Paul R. Woodward,et al.  On the Divergence-free Condition and Conservation Laws in Numerical Simulations for Supersonic Magnetohydrodynamical Flows , 1998 .

[68]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[69]  Antonio Marquina,et al.  Morphology and Dynamics of Relativistic Jets , 1997 .

[70]  J. Font,et al.  Numerical 3+1 General Relativistic Magnetohydrodynamics: A Local Characteristic Approach , 1997, astro-ph/0506063.

[71]  Bradley M. Peterson,et al.  An Introduction to Active Galactic Nuclei: Frontmatter , 1997 .

[72]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[73]  S.S.M. Wong,et al.  Relativistic Hydrodynamics and Essentially Non-oscillatory Shock Capturing Schemes , 1995 .

[74]  James M. Stone,et al.  MOCCT: A numerical technique for astrophysical MHD , 1995 .

[75]  José A. Font,et al.  Morphology and Dynamics of Highly Supersonic Relativistic Jets , 1995 .

[76]  S. Osher,et al.  Weighted essentially non-oscillatory schemes , 1994 .

[77]  P. Hughes,et al.  Simulations of Relativistic Extragalactic Jets , 1994, astro-ph/9406041.

[78]  D. Ryu,et al.  Numerical magnetohydrodynamics in astrophysics: Algorithm and tests for multidimensional flow , 1994, astro-ph/9505073.

[79]  Phillip Colella,et al.  A Higher-Order Godunov Method for Multidimensional Ideal Magnetohydrodynamics , 1994, SIAM J. Sci. Comput..

[80]  Ewald Müller,et al.  The analytical solution of the Riemann problem in relativistic hydrodynamics , 1994, Journal of Fluid Mechanics.

[81]  Harold L. Atkins,et al.  A Finite-Volume High-Order ENO Scheme for Two-Dimensional Hyperbolic Systems , 1993 .

[82]  Claus-Dieter Munz,et al.  New Algorithms for Ultra-relativistic Numerical Hydrodynamics , 1993 .

[83]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[84]  Chi-Wang Shu Total-variation-diminishing time discretizations , 1988 .

[85]  J. Hawley,et al.  Simulation of magnetohydrodynamic flows: A Constrained transport method , 1988 .

[86]  M. Brio,et al.  An upwind differencing scheme for the equations of ideal magnetohydrodynamics , 1988 .

[87]  S. Osher,et al.  Uniformly high order accurate essentially non-oscillatory schemes, 111 , 1987 .

[88]  W. F. Noh Errors for calculations of strong shocks using an artificial viscosity and artificial heat flux , 1985 .

[89]  P. Woodward,et al.  The numerical simulation of two-dimensional fluid flow with strong shocks , 1984 .

[90]  Martin J. Rees,et al.  Theory of extragalactic radio sources , 1984 .

[91]  A. Jameson,et al.  Numerical solution of the Euler equations by finite volume methods using Runge Kutta time stepping schemes , 1981 .

[92]  J. Brackbill,et al.  The Effect of Nonzero ∇ · B on the numerical solution of the magnetohydrodynamic equations☆ , 1980 .

[93]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[94]  S. Orszag,et al.  Small-scale structure of two-dimensional magnetohydrodynamic turbulence , 1979, Journal of Fluid Mechanics.

[95]  R. Blandford,et al.  Fluid dynamics of relativistic blast waves , 1976 .

[96]  Martin J. Rees,et al.  A ‘Twin-Exhaust’ Model for Double Radio Sources , 1974 .

[97]  A. Lichnerowicz,et al.  Relativistic Hydrodynamics and Magnetohydrodynamics: Lectures on the Existence of Solutions , 1968 .

[98]  P. Lax,et al.  Systems of conservation laws , 1960 .

[99]  R. Jennison,et al.  Fine Structure of the Extra-terrestrial Radio Source Cygnus I , 1953, Nature.

[100]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[101]  Huazhong Tang,et al.  An Adaptive Moving Mesh Method for Two-Dimensional Relativistic Hydrodynamics , 2012 .

[102]  L U C I A N O R E Z Z O L L A,et al.  Under consideration for publication in J. Fluid Mech. 1 An Improved Exact Riemann Solver for Relativistic Hydrodynamics , 2008 .

[103]  Under consideration for publication in J. Fluid Mech. 1 An Improved Exact Riemann Solver for Multidimensional Relativistic Flows , 2008 .

[104]  B R U N O G I A C O M A Z Z O,et al.  Under consideration for publication in J. Fluid Mech. 1 The Exact Solution of the Riemann Problem in Relativistic MHD , 2008 .

[105]  G. Bodo,et al.  An HLLC Solver for Relativistic Flows – II . , 2006 .

[106]  Willem Hundsdorfer,et al.  Monotonicity-Preserving Linear Multistep Methods , 2003, SIAM J. Numer. Anal..

[107]  Dinshaw S. Balsara,et al.  Total Variation Diminishing Scheme for Relativistic Magnetohydrodynamics , 2001 .

[108]  A. Bressan Hyperbolic systems of conservation laws : the one-dimensional Cauchy problem , 2000 .

[109]  Chi-Wang Shu,et al.  Total variation diminishing Runge-Kutta schemes , 1998, Math. Comput..

[110]  K. Powell An Approximate Riemann Solver for Magnetohydrodynamics , 1997 .

[111]  M. Hardcastle Energy transport in radio galaxies and quasars , 1997 .

[112]  Ewald Müller,et al.  Extension of the Piecewise Parabolic Method to One-Dimensional Relativistic Hydrodynamics , 1996 .

[113]  C. Carilli,et al.  Cygnus A : study of a radio galaxy : proceedings of the Greenbank workshop, held in Greenbank, West Virginia, May 1-4, 1995 , 1996 .

[114]  A. M. Anile,et al.  Relativistic Fluid Dynamics , 1989 .

[115]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .