Some results on L-dendriform algebras

Abstract We introduce the notion of an L-dendriform algebra due to several different motivations. L-dendriform algebras are regarded as the underlying algebraic structures of pseudo-Hessian structures on Lie groups and the algebraic structures behind the O -operators of pre-Lie algebras and the related S -equation. As a direct consequence, they provide some explicit solutions of S -equations in certain pre-Lie algebras constructed from L-dendriform algebras. They also fit into a bigger framework as Lie algebraic analogues of dendriform algebras. Moreover, we introduce the notion of an O -operator of an L-dendriform algebra which gives an algebraic equation regarded as an analogue of the classical Yang–Baxter equation in a Lie algebra.

[1]  Xiuxian Li,et al.  Rota-Baxter operators on pre-Lie algebras , 2007 .

[2]  Marcelo Aguiar,et al.  Quadri-algebras , 2003 .

[3]  K. Uchino Quantum Analogy of Poisson Geometry, Related Dendriform Algebras and Rota–Baxter Operators , 2007, math/0701320.

[4]  C. Bai ${\mathcal O}$-operators of Loday algebras and analogues of the classical Yang-Baxter equation , 2009, 0909.3740.

[5]  Bruno Vallette,et al.  Manin products, Koszul duality, Loday algebras and Deligne conjecture , 2006, math/0609002.

[6]  Chengming Bai,et al.  A unified algebraic approach to the classical Yang–Baxter equation , 2007, 0707.4226.

[7]  Maria O. Ronco,et al.  Primitive elements in a free dendriform algebra , 1999 .

[8]  Dietrich Burde,et al.  Left-symmetric algebras, or pre-Lie algebras in geometry and physics , 2005, math-ph/0509016.

[9]  Gian-Carlo Rota,et al.  Gian-Carlo Rota on combinatorics , 1995 .

[10]  Murray Gerstenhaber,et al.  The Cohomology Structure of an Associative Ring , 1963 .

[11]  G. Baxter,et al.  AN ANALYTIC PROBLEM WHOSE SOLUTION FOLLOWS FROM A SIMPLE ALGEBRAIC IDENTITY , 1960 .

[12]  C. Bai LEFT-SYMMETRIC BIALGEBRAS AND AN ANALOGUE OF THE CLASSICAL YANG–BAXTER EQUATION , 2007, 0708.1551.

[13]  A. Pressley,et al.  A guide to quantum groups , 1994 .

[14]  Kurusch Ebrahimi-Fard,et al.  NEW IDENTITIES IN DENDRIFORM ALGEBRAS , 2007, 0705.2636.

[15]  C. Bai 𝒪-Operators of Loday Algebras and Analogues of the Classical Yang–Baxter Equation , 2010 .

[16]  Hirohiko Shima,et al.  Homogeneous hessian manifolds , 1980 .

[17]  Frederic Chapoton Un théorème de Cartier–Milnor–Moore–Quillen pour les bigèbres dendriformes et les algèbres braces , 2000 .

[18]  B. Kupershmidt What a Classical r-Matrix Really Is , 1999, math/9910188.

[19]  Marcelo Aguiar,et al.  Pre-Poisson Algebras , 2000 .

[20]  Jean-Louis Loday Scindement d'associativite et algebres de Hopf , 2004 .

[21]  Rota-Baxter operators on pre-Lie algebras , 2007 .

[22]  M. A. Semenov-Tyan-Shanskii What is a classical r-matrix? , 1983 .