Multiperspective Focus+Context Visualization

Occlusions are a severe bottleneck for the visualization of large and complex datasets. Conventional images only show dataset elements to which there is a direct line of sight, which significantly limits the information bandwidth of the visualization. Multiperspective visualization is a powerful approach for alleviating occlusions to show more than what is visible from a single viewpoint. However, constructing and rendering multiperspective visualizations is challenging. We present a framework for designing multiperspective focus+context visualizations with great flexibility by manipulating the underlying camera model. The focus region viewpoint is adapted to alleviate occlusions. The framework supports multiperspective visualization in three scenarios. In a first scenario, the viewpoint is altered independently for individual image regions to avoid occlusions. In a second scenario, conventional input images are connected into a multiperspective image. In a third scenario, one or several data subsets of interest (i.e., targets) are visualized where they would be seen in the absence of occluders, as the user navigates or the targets move. The multiperspective images are rendered at interactive rates, leveraging the camera model's fast projection operation. We demonstrate the framework on terrain, urban, and molecular biology geometric datasets, as well as on volume rendered density datasets.

[1]  Leonard McMillan,et al.  A Framework for Multiperspective Rendering , 2004, Rendering Techniques.

[2]  Martin Falk,et al.  Panorama maps with non-linear ray tracing , 2007, GRAPHITE '07.

[3]  William R. Mark,et al.  Cg: a system for programming graphics hardware in a C-like language , 2003, ACM Trans. Graph..

[4]  Deborah Silver,et al.  Illustrative Deformation for Data Exploration , 2007, IEEE Transactions on Visualization and Computer Graphics.

[5]  Voicu Popescu,et al.  The Occlusion Camera , 2005, Comput. Graph. Forum.

[6]  R. Dutzler,et al.  Structural basis of open channel block in a prokaryotic pentameric ligand-gated ion channel , 2010, Nature Structural &Molecular Biology.

[7]  Voicu Popescu,et al.  A Curved Ray Camera for Handling Occlusions through Continuous Multiperspective Visualization , 2010, IEEE Transactions on Visualization and Computer Graphics.

[8]  Adam Finkelstein,et al.  Adaptive cutaways for comprehensible rendering of polygonal scenes , 2008, SIGGRAPH Asia '08.

[9]  Reinhard Klein,et al.  Context Aware Terrain Visualization for Wayfinding and Navigation , 2008, Comput. Graph. Forum.

[10]  Voicu Popescu,et al.  The graph camera , 2009, ACM Trans. Graph..

[11]  Niklas Elmqvist,et al.  A Taxonomy of 3D Occlusion Management for Visualization , 2008, IEEE Transactions on Visualization and Computer Graphics.

[12]  Eduard Gröller,et al.  Nonlinear ray tracing: Visualizing strange worlds , 1995, The Visual Computer.

[13]  Tomoyuki Nishita,et al.  To appear in an IEEE VGTC sponsored conference proceedings Occlusion-Free Animation of Driving Routes for Car Navigation Systems , 2022 .

[14]  Reinhard Klein,et al.  A variational approach for automatic generation of panoramic maps , 2009, ACM Trans. Graph..

[15]  Jens Schneider,et al.  ClearView: An Interactive Context Preserving Hotspot Visualization Technique , 2006, IEEE Transactions on Visualization and Computer Graphics.

[16]  Tomoyuki Nishita,et al.  Occlusion-Free Animation of Driving Routes for Car Navigation Systems , 2005, IEEE Transactions on Visualization and Computer Graphics.

[17]  David Salesin,et al.  Photographing long scenes with multi-viewpoint panoramas , 2006, ACM Trans. Graph..

[18]  Marc Levoy,et al.  Interactive design of multi-perspective images for visualizing urban landscapes , 2004, IEEE Visualization 2004.

[19]  Deborah Silver,et al.  Programmable shaders for deformation rendering , 2007, GH '07.

[20]  Voicu Popescu,et al.  An evaluation of 3-D scene exploration using a multiperspective image framework , 2011, The Visual Computer.

[21]  Roni Yagel,et al.  Space Deformation using Ray Deflectors , 1995, Rendering Techniques.

[22]  Maneesh Agrawala,et al.  Artistic Multiprojection Rendering , 2000, Rendering Techniques.

[23]  Christopher Schwartz,et al.  Effective Visualization of Short Routes , 2008, IEEE Transactions on Visualization and Computer Graphics.

[24]  Timo Ropinski,et al.  Advanced illumination techniques for GPU-based volume raycasting , 2008, SIGGRAPH 2008.

[25]  Paul Rademacher,et al.  Multiple-center-of-projection images , 1998, SIGGRAPH.

[26]  Stefan Bruckner,et al.  Exploded Views for Volume Data , 2006, IEEE Transactions on Visualization and Computer Graphics.

[27]  M. Sheelagh T. Carpendale,et al.  Edgelens: an interactive method for managing edge congestion in graphs , 2003, IEEE Symposium on Information Visualization 2003 (IEEE Cat. No.03TH8714).

[28]  L. Hurni,et al.  Interactive Local Terrain Deformation Inspired by Hand-painted Panoramas , 2011 .

[29]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[30]  Thomas Ertl,et al.  GPU‐Based Nonlinear Ray Tracing , 2004, Comput. Graph. Forum.

[31]  Voicu Popescu,et al.  An Efficient Error-Bounded General Camera Model , 2006, Third International Symposium on 3D Data Processing, Visualization, and Transmission (3DPVT'06).

[32]  Roni Yagel,et al.  Interactive Space Deformation with Hardware-Assisted Rendering , 1997, IEEE Computer Graphics and Applications.

[33]  David Salesin,et al.  Automated generation of interactive 3D exploded view diagrams , 2008, ACM Trans. Graph..

[34]  David Salesin,et al.  Multiperspective panoramas for cel animation , 1997, SIGGRAPH.

[35]  Leonard McMillan,et al.  General Linear Cameras , 2004, ECCV.