Penicillin binding proteins: key players in bacterial cell cycle and drug resistance processes.

Bacterial cell division and daughter cell formation are complex mechanisms whose details are orchestrated by at least a dozen different proteins. Penicillin-binding proteins (PBPs), membrane-associated macromolecules which play key roles in the cell wall synthesis process, have been exploited for over 70 years as the targets of the highly successful beta-lactam antibiotics. The increasing incidence of beta-lactam resistant microorganisms, coupled to progress made in genomics, genetics and immunofluorescence microscopy techniques, have encouraged the intensive study of PBPs from a variety of bacterial species. In addition, the recent publication of high-resolution structures of PBPs from pathogenic organisms have shed light on the complex intertwining of drug resistance and cell division processes. In this review, we discuss structural, functional and biological features of such enzymes which, albeit having initially been identified several decades ago, are now being aggressively pursued as highly attractive targets for the development of novel antibiotherapies.

[1]  C. Walsh,et al.  The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA) , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Q. Wang,et al.  Identification and Characterization of a Monofunctional Glycosyltransferase from Staphylococcus aureus , 2001, Journal of bacteriology.

[3]  Frederico J. Gueiros-Filho,et al.  A widely conserved bacterial cell division protein that promotes assembly of the tubulin-like protein FtsZ. , 2002, Genes & development.

[4]  T. Vernet,et al.  Crystal Structure of a Peptidoglycan Synthesis Regulatory Factor (PBP3) from Streptococcus pneumoniae* , 2005, Journal of Biological Chemistry.

[5]  Tom Alber,et al.  Structure of Mycobacterium tuberculosis PknB supports a universal activation mechanism for Ser/Thr protein kinases , 2003, Nature Structural Biology.

[6]  L. Gutmann,et al.  Structure of the low-affinity penicillin-binding protein 5 PBP5fm in wild-type and highly penicillin-resistant strains of Enterococcus faecium , 1996, Journal of bacteriology.

[7]  M. Arthur,et al.  Requirement of the VanY and VanX D,D‐peptidases for glycopeptide resistance in enterococci , 1998, Molecular microbiology.

[8]  Richard Bonnet,et al.  Structure, function, and inhibition along the reaction coordinate of CTX-M beta-lactamases. , 2005, Journal of the American Chemical Society.

[9]  E. Bi,et al.  Isolation and characterization of ftsZ alleles that affect septal morphology , 1992, Journal of bacteriology.

[10]  J. Ghuysen,et al.  Biochemistry and Comparative Genomics of SxxK Superfamily Acyltransferases Offer a Clue to the Mycobacterial Paradox: Presence of Penicillin-Susceptible Target Proteins versus Lack of Efficiency of Penicillin as Therapeutic Agent , 2002, Microbiology and Molecular Biology Reviews.

[11]  Waldemar Vollmer,et al.  In Vitro Murein (Peptidoglycan) Synthesis by Dimers of the Bifunctional Transglycosylase-Transpeptidase PBP1B from Escherichia coli* , 2005, Journal of Biological Chemistry.

[12]  J M Ghuysen,et al.  The crystal structure of the beta-lactamase of Streptomyces albus G at 0.3 nm resolution. , 1987, The Biochemical journal.

[13]  E. Bi,et al.  FtsZ ring structure associated with division in Escherichia coli , 1991, Nature.

[14]  R. Pratt,et al.  Functional evolution of the serine β-lactamase active site , 2002 .

[15]  Alex Bateman,et al.  The PASTA domain: a beta-lactam-binding domain. , 2002, Trends in biochemical sciences.

[16]  B. Murray The life and times of the Enterococcus , 1990, Clinical Microbiology Reviews.

[17]  J. Beckwith,et al.  A complex of the Escherichia coli cell division proteins FtsL, FtsB and FtsQ forms independently of its localization to the septal region , 2004, Molecular microbiology.

[18]  T. den Blaauwen,et al.  Maturation of the Escherichia coli divisome occurs in two steps , 2005, Molecular microbiology.

[19]  A. Tomasz,et al.  An acquired and a native penicillin-binding protein cooperate in building the cell wall of drug-resistant staphylococci , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[20]  C. Walsh,et al.  Mutational analysis of active-site residues of the enterococcal D-ala-D-Ala dipeptidase VanX and comparison with Escherichia coli D-ala-D-Ala ligase and D-ala-D-Ala carboxypeptidase VanY. , 1999, Chemistry & biology.

[21]  J. Ghuysen,et al.  The catalytic, glycosyl transferase and acyl transferase modules of the cell wall peptidoglycan‐polymerizing penicillin‐binding protein 1b of Escherichia coli , 1999, Molecular microbiology.

[22]  J. Anderson,et al.  Dipeptide binding to the extended active site of the Streptomyces R61 D-alanyl-D-alanine-peptidase: the path to a specific substrate. , 2000, Biochemistry.

[23]  J. Frère,et al.  The 3-D structure of a zinc metallo-beta-lactamase from Bacillus cereus reveals a new type of protein fold. , 1995, The EMBO journal.

[24]  J. Markwalder,et al.  Lipid II: total synthesis of the bacterial cell wall precursor and utilization as a substrate for glycosyltransfer and transpeptidation by penicillin binding protein (PBP) 1b of Escherichia coli. , 2001, Journal of the American Chemical Society.

[25]  J M Ghuysen,et al.  Molecular structures of penicillin-binding proteins and beta-lactamases. , 1994, Trends in microbiology.

[26]  G. Nicola,et al.  Crystal structure of Escherichia coli penicillin-binding protein 5 bound to a tripeptide boronic acid inhibitor: a role for Ser-110 in deacylation. , 2005, Biochemistry.

[27]  S. Walker,et al.  Kinetic Characterization of the Glycosyltransferase Module of Staphylococcus aureus PBP2 , 2005, Journal of bacteriology.

[28]  K. Young,et al.  Bacterial shape , 2003 .

[29]  J. Errington,et al.  Cytokinesis in Bacteria , 2003, Microbiology and Molecular Biology Reviews.

[30]  H. Zhang,et al.  A Proteolytic Transmembrane Signaling Pathway and Resistance to β-Lactams in Staphylococci , 2001, Science.

[31]  B. Spratt Distinct penicillin binding proteins involved in the division, elongation, and shape of Escherichia coli K12. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[32]  J. Frère,et al.  Catalytic mechanism of the Streptomyces K15 DD-transpeptidase/penicillin-binding protein probed by site-directed mutagenesis and structural analysis. , 2003, Biochemistry.

[33]  J. Frère,et al.  Interactions between Penicillin-Binding Proteins (PBPs) and Two Novel Classes of PBP Inhibitors, Arylalkylidene Rhodanines and Arylalkylidene Iminothiazolidin-4-ones , 2004, Antimicrobial Agents and Chemotherapy.

[34]  P. Setlow,et al.  Phenotypes of Bacillus subtilis mutants lacking multiple class A high-molecular-weight penicillin-binding proteins , 1996, Journal of bacteriology.

[35]  A. Tomasz,et al.  Recruitment of the mecA Gene Homologue ofStaphylococcus sciuri into a Resistance Determinant and Expression of the Resistant Phenotype inStaphylococcus aureus , 2001, Journal of bacteriology.

[36]  T. Vernet,et al.  Mutations in the Active Site of Penicillin-binding Protein PBP2x from Streptococcus pneumoniae , 1999, The Journal of Biological Chemistry.

[37]  A. Peleg,et al.  Dissemination of the metallo-beta-lactamase gene blaIMP-4 among gram-negative pathogens in a clinical setting in Australia. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[38]  G. Nicola,et al.  Crystal Structure of Wild-type Penicillin-binding Protein 5 from Escherichia coli , 2003, Journal of Biological Chemistry.

[39]  E. Potgieter,et al.  Relatedness between Streptococcus pneumoniae and viridans streptococci: transfer of penicillin resistance determinants and immunological similarities of penicillin-binding proteins. , 1991, FEMS microbiology letters.

[40]  J M Ghuysen,et al.  2.8-A Structure of penicillin-sensitive D-alanyl carboxypeptidase-transpeptidase from Streptomyces R61 and complexes with beta-lactams. , 1986, The Journal of biological chemistry.

[41]  G. Salmond,et al.  Regulation and biosynthesis of carbapenem antibiotics in bacteria , 2005, Nature Reviews Microbiology.

[42]  J. Frère,et al.  Penicillin binding protein 2x as a major contributor to intrinsic β‐lactam resistance of Streptococcus pneumoniae , 1993, FEBS letters.

[43]  N. Silvaggi,et al.  Structures of two kinetic intermediates reveal species specificity of penicillin-binding proteins. , 2002, Journal of molecular biology.

[44]  N. Nanninga,et al.  Rate and topography of peptidoglycan synthesis during cell division in Escherichia coli: concept of a leading edge , 1989, Journal of bacteriology.

[45]  Jean van Heijenoort,et al.  Recent Advances in the Formation of the Bacterial Peptidoglycan Monomer Unit , 2001 .

[46]  J. Mainardi,et al.  Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of beta-lactam resistance. , 1998, Journal of Infectious Diseases.

[47]  L. Kuerschner,et al.  Probing the Catalytic Activity of a Cell Division-Specific Transpeptidase In Vivo with β-Lactams , 2003, Journal of bacteriology.

[48]  T. Romeis,et al.  Specific interaction of penicillin-binding proteins 3 and 7/8 with soluble lytic transglycosylase in Escherichia coli. , 1994, The Journal of biological chemistry.

[49]  H. Chambers,et al.  PBP 2a Mutations Producing Very-High-Level Resistance to Beta-Lactams , 2004, Antimicrobial Agents and Chemotherapy.

[50]  J. Höltje,et al.  Growth of the Stress-Bearing and Shape-Maintaining Murein Sacculus of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[51]  T. Vernet,et al.  Pneumococcal β-Lactam Resistance Due to a Conformational Change in Penicillin-binding Protein 2x* , 2006, Journal of Biological Chemistry.

[52]  D. Mengin-Lecreulx,et al.  Purification and Characterization of the Bacterial MraY Translocase Catalyzing the First Membrane Step of Peptidoglycan Biosynthesis* , 2004, Journal of Biological Chemistry.

[53]  M. Page,et al.  In Vitro and In Vivo Properties of Ro 63-9141, a Novel Broad-Spectrum Cephalosporin with Activity against Methicillin-Resistant Staphylococci , 2001, Antimicrobial Agents and Chemotherapy.

[54]  L. Gutmann,et al.  Acquisition of Five High-MrPenicillin-Binding Protein Variants during Transfer of High-Level β-Lactam Resistance from Streptococcus mitis toStreptococcus pneumoniae , 1998, Journal of bacteriology.

[55]  N. Nanninga,et al.  Timing of FtsZ Assembly in Escherichia coli , 1999, Journal of bacteriology.

[56]  R C Goldman,et al.  Inhibition of transglycosylation involved in bacterial peptidoglycan synthesis. , 2000, Current medicinal chemistry.

[57]  J. Frère,et al.  Evolution of an enzyme activity: crystallographic structure at 2-A resolution of cephalosporinase from the ampC gene of Enterobacter cloacae P99 and comparison with a class A penicillinase. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[58]  T. Vernet,et al.  A PBP2x from a Clinical Isolate of Streptococcus pneumoniae Exhibits an Alternative Mechanism for Reduction of Susceptibility to β-Lactam Antibiotics* , 2004, Journal of Biological Chemistry.

[59]  S. White,et al.  Crystal Structure of a Deacylation-defective Mutant of Penicillin-binding Protein 5 at 2.3-Å Resolution* , 2001, The Journal of Biological Chemistry.

[60]  E. Sauvage,et al.  The 2.4-Å crystal structure of the penicillin-resistant penicillin-binding protein PBP5fm from Enterococcus faecium in complex with benzylpenicillin , 2002, Cellular and Molecular Life Sciences CMLS.

[61]  J. Frère,et al.  The catalytic mechanism of beta-lactamases: NMR titration of an active-site lysine residue of the TEM-1 enzyme. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[62]  J. Frère,et al.  Crystal Structure of the Actinomadura R39 DD-peptidase Reveals New Domains in Penicillin-binding Proteins* , 2005, Journal of Biological Chemistry.

[63]  B. Spratt Resistance to antibiotics mediated by target alterations. , 1994, Science.

[64]  M. G. Pinho,et al.  Bacterial Cell Wall Synthesis: New Insights from Localization Studies , 2005, Microbiology and Molecular Biology Reviews.

[65]  J. Potempa,et al.  On the Transcriptional Regulation of Methicillin Resistance , 2004, Journal of Biological Chemistry.

[66]  R. Nicholas,et al.  Potential transition state analogue inhibitors for the penicillin-binding proteins. , 2003, Biochemistry.

[67]  P. Giesbrecht,et al.  Staphylococcal Cell Wall: Morphogenesis and Fatal Variations in the Presence of Penicillin , 1998, Microbiology and Molecular Biology Reviews.

[68]  J Moult,et al.  Bacterial resistance to beta-lactam antibiotics: crystal structure of beta-lactamase from Staphylococcus aureus PC1 at 2.5 A resolution. , 1987, Science.

[69]  C. Jacobs-Wagner,et al.  Bacterial cell shape , 2005, Nature Reviews Microbiology.

[70]  T. Vernet,et al.  Crystal structure of penicillin-binding protein 1a (PBP1a) reveals a mutational hotspot implicated in beta-lactam resistance in Streptococcus pneumoniae. , 2006, Journal of molecular biology.

[71]  R. Jones,et al.  Antimicrobial activity of doripenem (S-4661): a global surveillance report (2003). , 2005, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[72]  M. Page,et al.  Crystal structure of the class D β-lactamase OXA-10 , 2000, Nature Structural Biology.

[73]  M. Ishiguro,et al.  Modeling study on a hydrolytic mechanism of class A β-lactamases , 1996 .

[74]  Daniel Lim,et al.  Structural basis for the β lactam resistance of PBP2a from methicillin-resistant Staphylococcus aureus , 2002, Nature Structural Biology.

[75]  K. Young,et al.  FtsZ Collaborates with Penicillin Binding Proteins To Generate Bacterial Cell Shape in Escherichia coli , 2004, Journal of bacteriology.

[76]  T. Vernet,et al.  Functional Characterization of Penicillin-Binding Protein 1b from Streptococcus pneumoniae , 2003, Journal of bacteriology.

[77]  R. Hakenbeck,et al.  Penicillin-binding proteins as resistance determinants in clinical isolates of Streptococcus pneumoniae. , 1996, Microbial drug resistance.

[78]  D. Stüber,et al.  The monofunctional glycosyltransferase of Escherichia coli is a member of a new class of peptidoglycan‐synthesising enzymes , 1996, FEBS letters.

[79]  S. Walker,et al.  Expression and characterization of the isolated glycosyltransferase module of Escherichia coli PBP1b. , 2004, Biochemistry.

[80]  D. Popham,et al.  Role of penicillin-binding proteins in bacterial cell morphogenesis. , 2003, Current opinion in microbiology.

[81]  H. Chambers,et al.  The changing epidemiology of Staphylococcus aureus? , 2001, Emerging infectious diseases.

[82]  Nanne Nanninga,et al.  Morphogenesis of Escherichia coli , 1998, Microbiology and Molecular Biology Reviews.

[83]  A. Kuzin,et al.  The refined crystallographic structure of a DD-peptidase penicillin-target enzyme at 1.6 A resolution. , 1995, Journal of molecular biology.

[84]  O. Dideberg,et al.  The crystal structure of the penicillin-binding protein 2x from Streptococcus pneumoniae and its acyl-enzyme form: implication in drug resistance. , 2000, Journal of molecular biology.

[85]  Carine Bebrone,et al.  A metallo-beta-lactamase enzyme in action: crystal structures of the monozinc carbapenemase CphA and its complex with biapenem. , 2005, Journal of molecular biology.

[86]  W. Vollmer,et al.  Demonstration of Molecular Interactions between the Murein Polymerase PBP1B, the Lytic Transglycosylase MltA, and the Scaffolding Protein MipA of Escherichia coli * , 1999, The Journal of Biological Chemistry.

[87]  N. Nanninga,et al.  Penicillin‐binding protein PBP2 of Escherichia coli localizes preferentially in the lateral wall and at mid‐cell in comparison with the old cell pole , 2003, Molecular microbiology.

[88]  J. Frère,et al.  Specificity and reversibility of the transpeptidation reaction catalyzed by the Streptomyces R61 D‐Ala‐D‐Ala peptidase , 2005, Protein science : a publication of the Protein Society.

[89]  R. Lurz,et al.  Mutational Analysis of the Streptococcus pneumoniae Bimodular Class A Penicillin-Binding Proteins , 1999, Journal of bacteriology.

[90]  M. Sternberg,et al.  Enhanced genome annotation using structural profiles in the program 3D-PSSM. , 2000, Journal of molecular biology.

[91]  J. Errington,et al.  Dispersed mode of Staphylococcus aureus cell wall synthesis in the absence of the division machinery , 2003, Molecular microbiology.

[92]  O. Dideberg,et al.  Crystal Structure of PBP2x from a Highly Penicillin-resistant Streptococcus pneumoniae Clinical Isolate , 2001, The Journal of Biological Chemistry.

[93]  Otto Dideberg,et al.  Active site restructuring regulates ligand recognition in class A penicillin-binding proteins. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[94]  T. Vernet,et al.  In vitro reconstitution of a trimeric complex of DivIB, DivIC and FtsL, and their transient co‐localization at the division site in Streptococcus pneumoniae , 2004, Molecular microbiology.

[95]  J. Gober,et al.  MreB, the cell shape‐determining bacterial actin homologue, co‐ordinates cell wall morphogenesis in Caulobacter crescentus , 2004, Molecular microbiology.

[96]  T. Vernet,et al.  The Structural Modifications Induced by the M339F Substitution in PBP2x from Streptococcus pneumoniae Further Decreases the Susceptibility to β-Lactams of Resistant Strains* , 2003, Journal of Biological Chemistry.

[97]  T. Vernet,et al.  Identification of a structural determinant for resistance to beta-lactam antibiotics in Gram-positive bacteria. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[98]  M Ishiguro,et al.  Modeling study on a hydrolytic mechanism of class A beta-lactamases. , 1996, Journal of medicinal chemistry.

[99]  J. Hoskins,et al.  Gene Disruption Studies of Penicillin-Binding Proteins 1a, 1b, and 2a in Streptococcus pneumoniae , 1999, Journal of bacteriology.

[100]  K. Young Bacterial shape , 2003, Molecular microbiology.

[101]  K. Bush,et al.  Taking inventory: antibacterial agents currently at or beyond phase 1. , 2004, Current opinion in microbiology.

[102]  Robert D. Finn,et al.  The PASTA domain: a β-lactam-binding domain , 2002 .

[103]  K. Poole,et al.  Interaction of the MexA and MexB Components of the MexAB-OprM Multidrug Efflux System of Pseudomonas aeruginosa: Identification of MexA Extragenic Suppressors of a T578I Mutation in MexB , 2005, Antimicrobial Agents and Chemotherapy.

[104]  K. Young,et al.  Escherichia coli Mutants Lacking All Possible Combinations of Eight Penicillin Binding Proteins: Viability, Characteristics, and Implications for Peptidoglycan Synthesis , 1999, Journal of bacteriology.

[105]  J. Frère,et al.  The 3‐D structure of a zinc metallo‐beta‐lactamase from Bacillus cereus reveals a new type of protein fold. , 1995 .

[106]  T. Vernet,et al.  Growth and division of Streptococcus pneumoniae: localization of the high molecular weight penicillin‐binding proteins during the cell cycle , 2003, Molecular microbiology.

[107]  R. Brasseur,et al.  The Crystal Structure of a Penicilloyl-serine Transferase of Intermediate Penicillin Sensitivity , 1999, The Journal of Biological Chemistry.

[108]  W. Margolin,et al.  FtsZ Exhibits Rapid Movement and Oscillation Waves in Helix-like Patterns in Escherichia coli , 2004, Current Biology.

[109]  G. Satta,et al.  Overproduction of a low-affinity penicillin-binding protein and high-level ampicillin resistance in Enterococcus faecium , 1994, Antimicrobial Agents and Chemotherapy.

[110]  R. Hakenbeck,et al.  Resistant penicillin-binding proteins , 1998, Cellular and Molecular Life Sciences CMLS.

[111]  M. de Pedro,et al.  Murein segregation in Escherichia coli , 1997, Journal of bacteriology.

[112]  C. Walsh Opinion — anti-infectives: Where will new antibiotics come from? , 2003, Nature Reviews Microbiology.

[113]  L. Gutmann,et al.  Modification of penicillin-binding proteins of penicillin-resistant mutants of different species of enterococci. , 1990, The Journal of antimicrobial chemotherapy.

[114]  G. Archer,et al.  Interaction of Native and Mutant MecI Repressors with Sequences That Regulate mecA, the Gene Encoding Penicillin Binding Protein 2a in Methicillin-Resistant Staphylococci , 1998, Journal of bacteriology.

[115]  O. Dideberg,et al.  X-ray structure of Streptococcus pneumoniae PBP2x, a primary penicillin target enzyme , 1996, Nature Structural Biology.

[116]  J. Tame,et al.  Crystal structure of penicillin binding protein 4 (dacB) from Escherichia coli, both in the native form and covalently linked to various antibiotics. , 2006, Biochemistry.

[117]  A. Tomasz,et al.  Inhibition of the expression of penicillin resistance in Streptococcus pneumoniae by inactivation of cell wall muropeptide branching genes. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[118]  T. Vernet,et al.  The d,d‐carboxypeptidase PBP3 organizes the division process of Streptococcus pneumoniae , 2004, Molecular microbiology.

[119]  J. Mainardi,et al.  Balance between Two Transpeptidation Mechanisms Determines the Expression of β-Lactam Resistance in Enterococcus faecium * , 2002, The Journal of Biological Chemistry.

[120]  H. Chambers Evaluation of Ceftobiprole in a Rabbit Model of Aortic Valve Endocarditis Due to Methicillin-Resistant and Vancomycin-Intermediate Staphylococcus aureus , 2005, Antimicrobial Agents and Chemotherapy.

[121]  K. Sharp,et al.  Protein folding and association: Insights from the interfacial and thermodynamic properties of hydrocarbons , 1991, Proteins.

[122]  M. Konomi,et al.  In Vitro Activity of Tebipenem, a New Oral Carbapenem Antibiotic, against Penicillin-Nonsusceptible Streptococcus pneumoniae , 2005, Antimicrobial Agents and Chemotherapy.

[123]  David L. Popham,et al.  Structure and Synthesis of Cell Wall, Spore Cortex, Teichoic Acids, S-Layers, and Capsules , 2002 .

[124]  P. Hopewell,et al.  Imipenem for Treatment of Tuberculosis in Mice and Humans , 2005, Antimicrobial Agents and Chemotherapy.

[125]  J. Lutkenhaus,et al.  Unique and overlapping roles for ZipA and FtsA in septal ring assembly in Escherichia coli , 2002, The EMBO journal.

[126]  Frederico J. Gueiros-Filho,et al.  Assembly Dynamics of FtsZ Rings in Bacillus subtilis and Escherichia coli and Effects of FtsZ-Regulating Proteins , 2004, Journal of bacteriology.

[127]  P. Setlow,et al.  Cloning, nucleotide sequence, and mutagenesis of the Bacillus subtilis ponA operon, which codes for penicillin-binding protein (PBP) 1 and a PBP-related factor , 1995, Journal of bacteriology.

[128]  C. Betzel,et al.  Molecular structure of the acyl-enzyme intermediate in β-lactam hydrolysis at 1.7 Å resolution , 1992, Nature.

[129]  J. Errington,et al.  Recruitment of penicillin‐binding protein PBP2 to the division site of Staphylococcus aureus is dependent on its transpeptidation substrates , 2004, Molecular microbiology.

[130]  J. Errington,et al.  PBP1 Is a Component of the Bacillus subtilis Cell Division Machinery , 2004, Journal of bacteriology.