Metastable states such as gels and glasses that are commonly seen in nanoparticle suspensions have found application in a wide range of products including toothpaste, hand cream, paints, and car tires. The equilibrium and metastable state behavior of nanoparticle suspensions are often described by simple fluid models where particles are treated as having hard cores and interacting with short-range attractions. Here we explore similar models to describe the presence of metastable states of small-molecule solutions. We have recently shown that the equilibrium solubilities of small hydrogen-bonding molecules and nanoparticles fall onto a corresponding-states solubility curve suggesting that with similar average strengths of attraction these molecules have similar solubilities. This observation implies that metastable states in small-molecule solutions may be found under conditions similar to those where metastable states are observed in nanoparticle and colloidal suspensions. Here we seek confirmation of this concept by exploring the existence of metastable states in solutions of small molecules.