Anion-Doped TiO2 Nanocatalysts for Water Purification under Visible Light

Innovative sol–gel synthesis based on the self-assembling template method has been applied to synthesize mesoporous anion-doped TiO2 with N–F, S and C atoms using suitable surfactants and reagents, to improve simultaneously the structural, morphological, and electronic properties of TiO2 nanomaterials and achieve anion doping of titania with high visible light photoinduced reactivity. The incorporation of anion species in the titania structure resulted in the effective extension of TiO2 optical absorption in the visible range through the formation of intragap energy states. The anion-doped titania materials immobilized in the form of nanostructured thin films on glass substrates exhibited high photocatalytic efficiency for the degradation of the microcystin-LR (MC-LR) cyanotoxin, a hazardous water pollutant of emerging concern, under visible light irradiation. The development of these visible light-activated nanocatalysts has the potential of providing environmentally benign routes for water treatment.

[1]  Ning Liu,et al.  A review of photocatalysis using self-organized TiO2 nanotubes and other ordered oxide nanostructures. , 2012, Small.

[2]  M. Paganini,et al.  Mechanism of the Photoactivity under Visible Light of N-Doped Titanium Dioxide. Charge Carriers Migration in Irradiated N-TiO2 Investigated by Electron Paramagnetic Resonance. , 2012 .

[3]  M. Seery,et al.  A review on the visible light active titanium dioxide photocatalysts for environmental applications , 2012 .

[4]  N. Ioannidis,et al.  Synthesis, characterization and photocatalytic evaluation of visible light activated C-doped TiO2 nanoparticles , 2012, Nanotechnology.

[5]  Dionysios D. Dionysiou,et al.  Destruction of microcystins by conventional and advanced oxidation processes: A review , 2012 .

[6]  D. Dionysiou,et al.  Photocatalytic degradation and mineralization of microcystin-LR under UV-A, solar and visible light using nanostructured nitrogen doped TiO2. , 2012, Journal of hazardous materials.

[7]  M. Fernández-García,et al.  Advanced nanoarchitectures for solar photocatalytic applications. , 2012, Chemical reviews.

[8]  Rafael Luque,et al.  Facile preparation of controllable size monodisperse anatase titania nanoparticles. , 2012, Chemical communications.

[9]  S. Linic,et al.  Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. , 2011, Nature materials.

[10]  Dionysios D. Dionysiou,et al.  Innovative visible light-activated sulfur doped TiO2 films for water treatment , 2011 .

[11]  A. Ismail,et al.  Mesoporous titania photocatalysts: preparation, characterization and reaction mechanisms , 2011 .

[12]  Mietek Jaroniec,et al.  Anatase TiO2 with Dominant High-Energy {001} Facets: Synthesis, Properties, and Applications , 2011 .

[13]  Zhongbiao Wu,et al.  Enhancement of the Visible Light Photocatalytic Activity of C-Doped TiO2 Nanomaterials Prepared by a Green Synthetic Approach , 2011 .

[14]  M. A. Henderson A surface science perspective on TiO2 photocatalysis , 2011 .

[15]  D. Dionysiou,et al.  Effects of water parameters on the degradation of microcystin-LR under visible light-activated TiO2 photocatalyst. , 2011, Water research.

[16]  Xiaobo Chen,et al.  Increasing Solar Absorption for Photocatalysis with Black Hydrogenated Titanium Dioxide Nanocrystals , 2011, Science.

[17]  M. Jaroniec,et al.  Fabrication and enhanced visible-light photocatalytic activity of carbon self-doped TiO2 sheets with exposed {001} facets , 2011 .

[18]  Detlef W. Bahnemann,et al.  TiO2 for water treatment: Parameters affecting the kinetics and mechanisms of photocatalysis , 2010 .

[19]  Dionysios D. Dionysiou,et al.  Synthesis, structural characterization and evaluation of sol-gel-based NF-TiO2 films with visible light-photoactivation for the removal of microcystin-LR , 2010 .

[20]  Dionysios D. Dionysiou,et al.  CLEAN WATER: water detoxification using innovative photocatalysts , 2010 .

[21]  Tarek A. Kandiel,et al.  Tailored Titanium Dioxide Nanomaterials: Anatase Nanoparticles and Brookite Nanorods as Highly Active Photocatalysts , 2010 .

[22]  L. Lawton,et al.  The degradation of microcystin-LR using doped visible light absorbing photocatalysts. , 2010, Chemosphere.

[23]  Lianzhou Wang,et al.  Titania-based photocatalysts—crystal growth, doping and heterostructuring , 2010 .

[24]  Vyacheslav N. Kuznetsov,et al.  On the Origin of the Spectral Bands in the Visible Absorption Spectra of Visible-Light-Active TiO2 Specimens Analysis and Assignments , 2009 .

[25]  Elias Stathatos,et al.  Visible light-activated N-F-codoped TiO2 nanoparticles for the photocatalytic degradation of microcystin-LR in water ☆ , 2009 .

[26]  K. Schmidt-Rohr,et al.  Solid-State 13C NMR Characterization of Carbon-Modified TiO2 , 2009 .

[27]  A. Fujishima,et al.  TiO2 photocatalysis and related surface phenomena , 2008 .

[28]  P. Schmuki,et al.  Phase Composition, Size, Orientation, and Antenna Effects of Self-Assembled Anodized Titania Nanotube Arrays : A Polarized Micro-Raman Investigation , 2008 .

[29]  G. Pacchioni,et al.  Density Functional Theory and Electron Paramagnetic Resonance Study on the Effect of N−F Codoping of TiO2 , 2008 .

[30]  D. Dionysiou,et al.  LC/MS/MS structure elucidation of reaction intermediates formed during the TiO(2) photocatalysis of microcystin-LR. , 2008, Toxicon : official journal of the International Society on Toxinology.

[31]  G. Pacchioni,et al.  N-doped TiO2: Theory and experiment , 2007 .

[32]  Miguel Pelaez,et al.  Mesoporous nitrogen-doped TiO2 for the photocatalytic destruction of the cyanobacterial toxin microcystin-LR under visible light irradiation. , 2007, Environmental science & technology.

[33]  Xiaobo Chen,et al.  Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. , 2007, Chemical reviews.

[34]  Philippe Colomban,et al.  Raman Spectroscopy of Nanomaterials: How Spectra Relate to Disorder, Particle Size and Mechanical Properties , 2007 .

[35]  Z. Zou,et al.  Low temperature preparation and visible light photocatalytic activity of mesoporous carbon-doped crystalline TiO2 , 2007 .

[36]  Rajender S. Varma,et al.  Thermally Stable Nanocrystalline TiO2 Photocatalysts Synthesized via Sol−Gel Methods Modified with Ionic Liquid and Surfactant Molecules , 2006 .

[37]  Dionysios D. Dionysiou,et al.  Nanocrystalline TiO2 Photocatalytic Membranes with a Hierarchical Mesoporous Multilayer Structure: Synthesis, Characterization, and Multifunction , 2006 .

[38]  L. Dubrovinsky,et al.  Finite-size and pressure effects on the Raman spectrum of nanocrystalline anatase Ti O 2 , 2005 .

[39]  A. Gilewicz,et al.  Evaluation of phase, composition, microstructure and properties in TiC/a-C:H thin films deposited by magnetron sputtering , 2005 .

[40]  M. Hoffmann,et al.  Oxidative Power of Nitrogen-Doped TiO2 Photocatalysts under Visible Illumination , 2004 .

[41]  K. Hashimoto,et al.  Carbon-doped Anatase TiO2 Powders as a Visible-light Sensitive Photocatalyst , 2003 .

[42]  Yuka Watanabe,et al.  Nitrogen-Concentration Dependence on Photocatalytic Activity of TiO2-xNx Powders , 2003 .

[43]  Peter K. J. Robertson,et al.  PHYSICO-CHEMICAL TREATMENT METHODS FOR THE REMOVAL OF MICROCYSTINS (CYANOBACTERIAL HEPATOTOXINS) FROM POTABLE WATERS , 1999 .

[44]  F. Pollak,et al.  RAMAN SPECTROSCOPY AS A MORPHOLOGICAL PROBE FOR TIO2 AEROGELS , 1997 .

[45]  G. Tompsett,et al.  The Raman spectrum of brookite, TiO2 (Pbca, Z = 8) , 1995 .

[46]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .