Structure and bonding in coinage metal halide clusters M(n)X(n), M = Cu, Ag, Au; X = Br, I; n = 1-6.
暂无分享,去创建一个
[1] F. Spiegelman,et al. Ab initio study of silver bromide AgnBrp(+) clusters (n⩽6,p=n,n−1) , 2001 .
[2] Gerry,et al. The Pure Rotational Spectra of AuCl and AuBr. , 2000, Journal of Molecular Spectroscopy.
[3] M. Morse. Clusters of transition-metal atoms , 1986 .
[4] Augusto Beléndez,et al. Mixed phase-amplitude holographic gratings recorded in bleached silver halide materials , 2002 .
[5] A. Becke. Density-functional thermochemistry. III. The role of exact exchange , 1993 .
[6] J. Heully,et al. Ab initio calculations of structural and electronic properties of small silver bromide clusters , 1999 .
[7] Jun Li,et al. The mixed cyanide halide Au(I) complexes, [XAuCN]− (X = F, Cl, Br, and I): evolution from ionic to covalent bonding , 2011 .
[8] C. Tsipis,et al. Theoretical Determination of the Structural, Bonding, and Magnetoresponsive Properties of Square-Planar Ligand-Protected Noble Metal (Cu, Ag, Au) Clusters , 2010 .
[9] M. Y. Wang,et al. Electronic structures and chemical bonding in 4d transition metal monohalides , 2007, J. Comput. Chem..
[10] T. Klapötke,et al. Intriguing Gold TrifluorideMolecular Structure of Monomers and Dimers: An Electron Diffraction and Quantum Chemical Study , 2000 .
[11] T. P. Martin,et al. Matrix isolated copper and silver halide clusters , 1980 .
[12] H. Stoll,et al. Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .
[13] Parr,et al. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.
[14] Guntram Rauhut,et al. Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .
[15] P. Schwerdtfeger,et al. The molecular structure of different species of cuprous chloride from gas-phase electron diffraction and quantum chemical calculations. , 2003, Chemistry.
[16] Robert P. Krawczyk,et al. A comparison of structure and stability between the group 11 halide tetramers M4X4 (M = Cu, Ag, or Au; X = F, Cl, Br, or I) and the group 11 chloride and bromide phosphanes (XMPH3)4. , 2004, Inorganic chemistry.
[17] M. Hargittai,et al. Molecular Structure, Bonding, and Jahn−Teller Effect in Gold Chlorides: Quantum Chemical Study of AuCl3, Au2Cl6, AuCl4-, AuCl, and Au2Cl2 and Electron Diffraction Study of Au2Cl6 , 2001 .
[18] R. Konings,et al. Trimer formation of AgI. A gas-phase FT-IR and theoretical study , 2002 .
[19] M. Hargittai,et al. Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules, AuX, Au2X2, AuX3, and Au2X6 (X = F, Cl, Br, I). , 2001, Chemistry.
[20] G. Gigli,et al. Mass Spectrometric Study of the Vaporization of Cuprous Chloride and the Dissociation Energy of Cu3Cl3, Cu4Cl4, and Cu5Cl5 , 1971 .
[21] F. Rabilloud,et al. Metastable fragmentation of silver bromide clusters , 2001 .
[22] S K Kang,et al. Copper-catalyzed coupling reaction of terminal alkynes with aryl- and alkenyliodonium salts. , 2001, Organic letters.
[23] J. Berkowitz,et al. Photoelectron spectroscopy of AgCl, AgBr, and AgI vapors , 1980 .
[24] W. Demtröder,et al. High‐resolution isotope selective laser spectroscopy of Ag2 molecules , 1993 .
[25] D. Hildenbrand,et al. Composition and thermochemistry of silver bromide vapor. , 2005, The journal of physical chemistry. A.
[26] Frank Weinhold,et al. Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .
[27] Michael Dolg,et al. Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .
[28] G. Chambaud,et al. Electronic structure and spectroscopy of monohalides of metals of group I-B , 2002 .
[29] Abdul-Rahman Allouche,et al. Gabedit—A graphical user interface for computational chemistry softwares , 2011, J. Comput. Chem..
[30] H. Schäfer,et al. Gleichgewichtsdrucke über AgJ,f + Ag,f , 1973 .
[31] B. A. Hess,et al. Relativistic all-electron coupled-cluster calculations on Au2 in the framework of the Douglas–Kroll transformation , 2000 .
[32] Jun Li,et al. Photoelectron imaging and spectroscopy of MI(2)(-) (M = Cs, Cu, Au): evolution from ionic to covalent bonding. , 2010, The journal of physical chemistry. A.
[33] M. Binnewies,et al. Das Verdampfungsgleichgewicht des Silberchlorids , 1973 .
[34] F. Rabilloud,et al. Adiabatic electron affinities of (AgF)n clusters: Experiment and DFT calculations , 2008 .