Structure and bonding in coinage metal halide clusters M(n)X(n), M = Cu, Ag, Au; X = Br, I; n = 1-6.

Ab initio calculations in the framework of density functional theory (DFT) were performed to study the lowest-energy isomers of noble metal halide clusters M(n)Br(n) and M(n)I(n), for M = Cu, Ag, or Au and n = 1-6. For all species, the most stable structures were found to be cyclic arrangements. Calculated bond lengths and infrared frequencies were compared with the available experimental data. The nature of the ionocovalent bonding was characterized. The stability and fragmentation were also investigated. The present work confirms previous observations on the particular stability of the trimer.

[1]  F. Spiegelman,et al.  Ab initio study of silver bromide AgnBrp(+) clusters (n⩽6,p=n,n−1) , 2001 .

[2]  Gerry,et al.  The Pure Rotational Spectra of AuCl and AuBr. , 2000, Journal of Molecular Spectroscopy.

[3]  M. Morse Clusters of transition-metal atoms , 1986 .

[4]  Augusto Beléndez,et al.  Mixed phase-amplitude holographic gratings recorded in bleached silver halide materials , 2002 .

[5]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[6]  J. Heully,et al.  Ab initio calculations of structural and electronic properties of small silver bromide clusters , 1999 .

[7]  Jun Li,et al.  The mixed cyanide halide Au(I) complexes, [XAuCN]− (X = F, Cl, Br, and I): evolution from ionic to covalent bonding , 2011 .

[8]  C. Tsipis,et al.  Theoretical Determination of the Structural, Bonding, and Magnetoresponsive Properties of Square-Planar Ligand-Protected Noble Metal (Cu, Ag, Au) Clusters , 2010 .

[9]  M. Y. Wang,et al.  Electronic structures and chemical bonding in 4d transition metal monohalides , 2007, J. Comput. Chem..

[10]  T. Klapötke,et al.  Intriguing Gold TrifluorideMolecular Structure of Monomers and Dimers: An Electron Diffraction and Quantum Chemical Study , 2000 .

[11]  T. P. Martin,et al.  Matrix isolated copper and silver halide clusters , 1980 .

[12]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[13]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[14]  Guntram Rauhut,et al.  Energy-consistent pseudopotentials for group 11 and 12 atoms: adjustment to multi-configuration Dirac–Hartree–Fock data , 2005 .

[15]  P. Schwerdtfeger,et al.  The molecular structure of different species of cuprous chloride from gas-phase electron diffraction and quantum chemical calculations. , 2003, Chemistry.

[16]  Robert P. Krawczyk,et al.  A comparison of structure and stability between the group 11 halide tetramers M4X4 (M = Cu, Ag, or Au; X = F, Cl, Br, or I) and the group 11 chloride and bromide phosphanes (XMPH3)4. , 2004, Inorganic chemistry.

[17]  M. Hargittai,et al.  Molecular Structure, Bonding, and Jahn−Teller Effect in Gold Chlorides: Quantum Chemical Study of AuCl3, Au2Cl6, AuCl4-, AuCl, and Au2Cl2 and Electron Diffraction Study of Au2Cl6 , 2001 .

[18]  R. Konings,et al.  Trimer formation of AgI. A gas-phase FT-IR and theoretical study , 2002 .

[19]  M. Hargittai,et al.  Structural variations and bonding in gold halides: a quantum chemical study of monomeric and dimeric gold monohalide and gold trihalide molecules, AuX, Au2X2, AuX3, and Au2X6 (X = F, Cl, Br, I). , 2001, Chemistry.

[20]  G. Gigli,et al.  Mass Spectrometric Study of the Vaporization of Cuprous Chloride and the Dissociation Energy of Cu3Cl3, Cu4Cl4, and Cu5Cl5 , 1971 .

[21]  F. Rabilloud,et al.  Metastable fragmentation of silver bromide clusters , 2001 .

[22]  S K Kang,et al.  Copper-catalyzed coupling reaction of terminal alkynes with aryl- and alkenyliodonium salts. , 2001, Organic letters.

[23]  J. Berkowitz,et al.  Photoelectron spectroscopy of AgCl, AgBr, and AgI vapors , 1980 .

[24]  W. Demtröder,et al.  High‐resolution isotope selective laser spectroscopy of Ag2 molecules , 1993 .

[25]  D. Hildenbrand,et al.  Composition and thermochemistry of silver bromide vapor. , 2005, The journal of physical chemistry. A.

[26]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[27]  Michael Dolg,et al.  Ab initio energy-adjusted pseudopotentials for elements of groups 13-17 , 1993 .

[28]  G. Chambaud,et al.  Electronic structure and spectroscopy of monohalides of metals of group I-B , 2002 .

[29]  Abdul-Rahman Allouche,et al.  Gabedit—A graphical user interface for computational chemistry softwares , 2011, J. Comput. Chem..

[30]  H. Schäfer,et al.  Gleichgewichtsdrucke über AgJ,f + Ag,f , 1973 .

[31]  B. A. Hess,et al.  Relativistic all-electron coupled-cluster calculations on Au2 in the framework of the Douglas–Kroll transformation , 2000 .

[32]  Jun Li,et al.  Photoelectron imaging and spectroscopy of MI(2)(-) (M = Cs, Cu, Au): evolution from ionic to covalent bonding. , 2010, The journal of physical chemistry. A.

[33]  M. Binnewies,et al.  Das Verdampfungsgleichgewicht des Silberchlorids , 1973 .

[34]  F. Rabilloud,et al.  Adiabatic electron affinities of (AgF)n clusters: Experiment and DFT calculations , 2008 .