The strange Microenvironment of Glioblastoma.

[1]  P. Siegel,et al.  Single-cell spatial immune landscapes of primary and metastatic brain tumours , 2023, Nature.

[2]  X. Wang,et al.  Targeting Microglial Metabolic Rewiring Synergizes with Immune Checkpoint Blockade Therapy for Glioblastoma. , 2023, Cancer discovery.

[3]  I. Fournier,et al.  Challenges in glioblastoma research: focus on the tumor microenvironment. , 2022, Trends in cancer.

[4]  N. Nakayama,et al.  NMDA receptor signaling induces the chemoresistance of temozolomide via upregulation of MGMT expression in glioblastoma cells , 2022, Journal of Neuro-Oncology.

[5]  J. Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2015-2019. , 2022, Neuro-oncology.

[6]  M. Monje,et al.  Neuron–Glial Interactions in Health and Brain Cancer , 2022, Advanced biology.

[7]  T. Kuner,et al.  Glioblastoma hijacks neuronal mechanisms for brain invasion , 2022, Cell.

[8]  K. Shah,et al.  Arginine deprivation alters microglial polarity and synergizes with radiation to eradicate non-arginine-auxotrophic glioblastoma tumors , 2022, The Journal of clinical investigation.

[9]  Wei Zhang,et al.  Clinical characterization and immunosuppressive regulation of CD161 (KLRB1) in glioma through 916 samples , 2021, Cancer science.

[10]  M. Lim,et al.  Roles of Neutrophils in Glioma and Brain Metastases , 2021, Frontiers in Immunology.

[11]  G. Reifenberger,et al.  The 2021 WHO Classification of Tumors of the Central Nervous System: a summary. , 2021, Neuro-oncology.

[12]  M. Sanson,et al.  SLIT2-ROBO signaling in tumor-associated microglia/macrophages drives glioblastoma immunosuppression and vascular dysmorphia , 2021, bioRxiv.

[13]  K. Jin,et al.  Adenosinergic Pathway: A Hope in the Immunotherapy of Glioblastoma , 2021, Cancers.

[14]  F. Morrone,et al.  Immunosuppression in Gliomas via PD-1/PD-L1 Axis and Adenosine Pathway , 2021, Frontiers in Oncology.

[15]  Joshua D. Wythe,et al.  Identification of diverse tumor endothelial cell populations in malignant glioma. , 2020, Neuro-oncology.

[16]  C. Brennan,et al.  Interrogation of the Microenvironmental Landscape in Brain Tumors Reveals Disease-Specific Alterations of Immune Cells , 2020, Cell.

[17]  M. Weller,et al.  Effect of Nivolumab vs Bevacizumab in Patients With Recurrent Glioblastoma , 2020, JAMA oncology.

[18]  G. Rao,et al.  Role of CX3CR1 Signaling in Malignant Transformation of Gliomas. , 2019, Neuro-oncology.

[19]  R. Jain,et al.  Vessel co-option in glioblastoma: emerging insights and opportunities , 2019, Angiogenesis.

[20]  T. Kuner,et al.  Glutamatergic synaptic input to glioma cells drives brain tumour progression , 2019, Nature.

[21]  S. Srivastava,et al.  A Characterization of Dendritic Cells and Their Role in Immunotherapy in Glioblastoma: From Preclinical Studies to Clinical Trials , 2019, Cancers.

[22]  P. Wen,et al.  Neoadjuvant anti-PD-1 immunotherapy promotes a survival benefit with intratumoral and systemic immune responses in recurrent glioblastoma , 2018, Nature Medicine.

[23]  C. Castañeda,et al.  Distribution of tumor-infiltrating immune cells in glioblastoma , 2018, CNS oncology.

[24]  Jill S Barnholtz-Sloan,et al.  CBTRUS Statistical Report: Primary Brain and Other Central Nervous System Tumors Diagnosed in the United States in 2011-2015. , 2018, Neuro-oncology.

[25]  B. Nahed,et al.  Sequestration of T-cells in bone marrow in the setting of glioblastoma and other intracranial tumors , 2018, Nature Medicine.

[26]  M. Oldham,et al.  A Glial Signature and Wnt7 Signaling Regulate Glioma-Vascular Interactions and Tumor Microenvironment. , 2018, Cancer cell.

[27]  Dai Fukumura,et al.  Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges , 2018, Nature Reviews Clinical Oncology.

[28]  Lin Zhang,et al.  Vascular niche IL-6 induces alternative macrophage activation in glioblastoma through HIF-2α , 2018, Nature Communications.

[29]  A. Kriegstein,et al.  Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment , 2017, Genome Biology.

[30]  Holger Gerhardt,et al.  Dynamic stroma reorganization drives blood vessel dysmorphia during glioma growth , 2017, EMBO molecular medicine.

[31]  R. Martuza,et al.  Macrophage Polarization Contributes to Glioblastoma Eradication by Combination Immunovirotherapy and Immune Checkpoint Blockade. , 2017, Cancer cell.

[32]  R. Jain,et al.  Effect of angiotensin system inhibitors on survival in newly diagnosed glioma patients and recurrent glioblastoma patients receiving chemotherapy and/or bevacizumab , 2017, Journal of Neuro-Oncology.

[33]  T. Cloughesy,et al.  Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma , 2017, Neuro-oncology.

[34]  Zhihong Chen,et al.  Cellular and Molecular Identity of Tumor-Associated Macrophages in Glioblastoma. , 2017, Cancer research.

[35]  K. Miyake,et al.  Bevacizumab for malignant gliomas: current indications, mechanisms of action and resistance, and markers of response , 2017, Brain Tumor Pathology.

[36]  P. Lowenstein,et al.  Immunosuppressive Myeloid Cells' Blockade in the Glioma Microenvironment Enhances the Efficacy of Immune-Stimulatory Gene Therapy. , 2017, Molecular therapy : the journal of the American Society of Gene Therapy.

[37]  S. Hendry,et al.  The Role of the Tumor Vasculature in the Host Immune Response: Implications for Therapeutic Strategies Targeting the Tumor Microenvironment , 2016, Front. Immunol..

[38]  F. Zhang,et al.  The Robo4 cytoplasmic domain is dispensable for vascular permeability and neovascularization , 2016, Nature Communications.

[39]  C. Brennan,et al.  Macrophage Ontogeny Underlies Differences in Tumor-Specific Education in Brain Malignancies. , 2016, Cell reports.

[40]  M. Preusser,et al.  In search of a target: PD-1 and PD-L1 profiling across glioma types. , 2016, Neuro-oncology.

[41]  O. Chinot,et al.  Changes in PlGF and MET-HGF expressions in paired initial and recurrent glioblastoma , 2016, Journal of Neuro-Oncology.

[42]  H. Kettenmann,et al.  Human glioblastoma‐associated microglia/monocytes express a distinct RNA profile compared to human control and murine samples , 2016, Glia.

[43]  Diane D. Liu,et al.  A randomized phase II trial of standard dose bevacizumab versus low dose bevacizumab plus lomustine (CCNU) in adults with recurrent glioblastoma , 2016, Journal of Neuro-Oncology.

[44]  A. Idbaih,et al.  Blood-brain barrier, cytotoxic chemotherapies and glioblastoma , 2016, Expert review of neurotherapeutics.

[45]  Eric C. Holland,et al.  The tumor microenvironment underlies acquired resistance to CSF-1R inhibition in gliomas , 2016, Science.

[46]  D. Figarella-Branger,et al.  Phenotypic dynamics of microglial and monocyte-derived cells in glioblastoma-bearing mice , 2016, Scientific Reports.

[47]  T. Tamiya,et al.  Histopathological investigation of glioblastomas resected under bevacizumab treatment , 2016, Oncotarget.

[48]  Lin Zhang,et al.  c-Met-mediated endothelial plasticity drives aberrant vascularization and chemoresistance in glioblastoma. , 2016, The Journal of clinical investigation.

[49]  R. Jain,et al.  Dual inhibition of Ang-2 and VEGF receptors normalizes tumor vasculature and prolongs survival in glioblastoma by altering macrophages , 2016, Proceedings of the National Academy of Sciences.

[50]  Jennie W. Taylor,et al.  Ang-2/VEGF bispecific antibody reprograms macrophages and resident microglia to anti-tumor phenotype and prolongs glioblastoma survival , 2016, Proceedings of the National Academy of Sciences.

[51]  M. Prados,et al.  Orally administered colony stimulating factor 1 receptor inhibitor PLX3397 in recurrent glioblastoma: an Ivy Foundation Early Phase Clinical Trials Consortium phase II study. , 2016, Neuro-oncology.

[52]  A. Órfão,et al.  Tumor infiltrating immune cells in gliomas and meningiomas , 2016, Brain, Behavior, and Immunity.

[53]  W. Wick,et al.  Current status and future directions of anti-angiogenic therapy for gliomas. , 2016, Neuro-oncology.

[54]  F. C. Bennett,et al.  New tools for studying microglia in the mouse and human CNS , 2016, Proceedings of the National Academy of Sciences.

[55]  M. Sanson,et al.  Angiopoietin-2 May Be Involved in the Resistance to Bevacizumab in Recurrent Glioblastoma , 2016, Cancer investigation.

[56]  Helmut Kettenmann,et al.  The role of microglia and macrophages in glioma maintenance and progression , 2015, Nature Neuroscience.

[57]  F. Geissmann,et al.  The Origin of Tissue-Resident Macrophages: When an Erythro-myeloid Progenitor Is an Erythro-myeloid Progenitor. , 2015, Immunity.

[58]  E. Mandonnet,et al.  Impact of Angiotensin-II receptor blockers on vasogenic edema in glioblastoma patients , 2015, Journal of Neurology.

[59]  A. Carpentier,et al.  Impact of renin‐angiotensin system blockade on clinical outcome in glioblastoma , 2015, European journal of neurology.

[60]  I. Keklikoglou,et al.  Perivascular M2 Macrophages Stimulate Tumor Relapse after Chemotherapy. , 2015, Cancer research.

[61]  R. Franco,et al.  Alternatively activated microglia and macrophages in the central nervous system , 2015, Progress in Neurobiology.

[62]  F. Ginhoux,et al.  Origin of microglia: current concepts and past controversies. , 2015, Cold Spring Harbor perspectives in biology.

[63]  M. Preusser,et al.  The inflammatory microenvironment in brain metastases: potential treatment target? , 2015, Chinese clinical oncology.

[64]  B. Faddegon,et al.  TH2-Polarized CD4+ T Cells and Macrophages Limit Efficacy of Radiotherapy , 2015, Cancer Immunology Research.

[65]  Qi-En Wang,et al.  Review Article TGF-β signaling and its targeting for glioma treatment , 2015 .

[66]  E. Tartour,et al.  VEGF-A modulates expression of inhibitory checkpoints on CD8+ T cells in tumors , 2015, The Journal of experimental medicine.

[67]  T. Langmann,et al.  Glioma-Associated Microglia/Macrophages Display an Expression Profile Different from M1 and M2 Polarization and Highly Express Gpnmb and Spp1 , 2015, PloS one.

[68]  William A. Flavahan,et al.  Periostin Secreted by Glioblastoma Stem Cells Recruits M2 Tumor-associated Macrophages and Promotes Malignant Growth , 2014, Nature Cell Biology.

[69]  R. Jain,et al.  Antiangiogenesis strategies revisited: from starving tumors to alleviating hypoxia. , 2014, Cancer cell.

[70]  T. Masumoto,et al.  Bevacizumab in Japanese patients with malignant glioma: from basic research to clinical trial , 2014, OncoTargets and therapy.

[71]  J. Aerts,et al.  Location, location, location: functional and phenotypic heterogeneity between tumor-infiltrating and non-infiltrating myeloid-derived suppressor cells , 2014, Oncoimmunology.

[72]  C. Eberhart,et al.  Molecular Pathways: Not a Simple Tube—The Many Functions of Blood Vessels , 2014, Clinical Cancer Research.

[73]  Jeffrey W Pollard,et al.  Tumor-associated macrophages: from mechanisms to therapy. , 2014, Immunity.

[74]  J. Blay,et al.  Targeting tumor-associated macrophages with anti-CSF-1R antibody reveals a strategy for cancer therapy. , 2014, Cancer cell.

[75]  Y. Marie,et al.  Tumor and Endothelial Cell Hybrids Participate in Glioblastoma Vasculature , 2014, BioMed research international.

[76]  Tao Jiang,et al.  Tumour-infiltrating CD4+ and CD8+ lymphocytes as predictors of clinical outcome in glioma , 2014, British Journal of Cancer.

[77]  K. Aldape,et al.  A randomized trial of bevacizumab for newly diagnosed glioblastoma. , 2014, The New England journal of medicine.

[78]  M. Mazzone,et al.  Altering the intratumoral localization of macrophages to inhibit cancer progression , 2014, Oncoimmunology.

[79]  S. Weiss,et al.  Therapeutic activation of macrophages and microglia to suppress brain tumor-initiating cells , 2013, Nature Neuroscience.

[80]  B. Ammori,et al.  Neuropilin 1: function and therapeutic potential in cancer , 2014, Cancer Immunology, Immunotherapy.

[81]  D. Quail,et al.  Microenvironmental regulation of tumor progression and metastasis , 2014 .

[82]  P. Marsden,et al.  Angiogenesis in glioblastoma. , 2013, The New England journal of medicine.

[83]  Christina S. Leslie,et al.  CSF-1R inhibition alters macrophage polarization and blocks glioma progression , 2013, Nature Medicine.

[84]  Christina Appin,et al.  Tumor-Infiltrating Lymphocytes in Glioblastoma Are Associated with Specific Genomic Alterations and Related to Transcriptional Class , 2013, Clinical Cancer Research.

[85]  T. Apanasovich,et al.  Glioma Grade Is Associated with the Accumulation and Activity of Cells Bearing M2 Monocyte Markers , 2013, Clinical Cancer Research.

[86]  R. Kaur,et al.  Gliomas Promote Immunosuppression through Induction of B7-H1 Expression in Tumor-Associated Macrophages , 2013, Clinical Cancer Research.

[87]  Lieping Chen,et al.  Molecular mechanisms of T cell co-stimulation and co-inhibition , 2013, Nature Reviews Immunology.

[88]  R. McLendon,et al.  Glioblastoma Stem Cells Generate Vascular Pericytes to Support Vessel Function and Tumor Growth , 2013, Cell.

[89]  C. Lewis,et al.  Macrophage regulation of tumor responses to anticancer therapies. , 2013, Cancer cell.

[90]  Jonathan B. Mitchem,et al.  Targeting tumor-infiltrating macrophages decreases tumor-initiating cells, relieves immunosuppression, and improves chemotherapeutic responses. , 2013, Cancer research.

[91]  J. Bruna,et al.  Bevacizumab for the Treatment of Glioblastoma , 2013, Clinical Medicine Insights. Oncology.

[92]  A. Carpentier,et al.  Steroid‐sparing effects of angiotensin‐II inhibitors in glioblastoma patients , 2012, European journal of neurology.

[93]  D. Cheresh,et al.  VEGF inhibits tumor cell invasion and mesenchymal transition through a MET/VEGFR2 complex. , 2012, Cancer cell.

[94]  J. Segall,et al.  Microglial Stimulation of Glioblastoma Invasion Involves Epidermal Growth Factor Receptor (EGFR) and Colony Stimulating Factor 1 Receptor (CSF-1R) Signaling , 2012, Molecular medicine.

[95]  S. Kahn,et al.  Microglial stress inducible protein 1 promotes proliferation and migration in human glioblastoma cells , 2012, Neuroscience.

[96]  E. Chavakis,et al.  Angiopoietin-2 promotes myeloid cell infiltration in a β₂-integrin-dependent manner. , 2011, Blood.

[97]  C. Glass,et al.  Microglial cell origin and phenotypes in health and disease , 2011, Nature Reviews Immunology.

[98]  Helmut Kettenmann,et al.  The brain tumor microenvironment , 2011, Glia.

[99]  Rakesh K. Jain,et al.  Principles and mechanisms of vessel normalization for cancer and other angiogenic diseases , 2011, Nature Reviews Drug Discovery.

[100]  P. Carmeliet,et al.  Molecular mechanisms and clinical applications of angiogenesis , 2011, Nature.

[101]  K. Plate,et al.  Angiopoietin 2 Stimulates TIE2-Expressing Monocytes To Suppress T Cell Activation and To Promote Regulatory T Cell Expansion , 2011, The Journal of Immunology.

[102]  E. Frenkel,et al.  The paradoxical effect of bevacizumab in the therapy of malignant gliomas , 2011, Neurology.

[103]  P. Wen,et al.  Antiangiogenic strategies for treatment of malignant gliomas , 2009, Neurotherapeutics.

[104]  Mauro Biffoni,et al.  Tumour vascularization via endothelial differentiation of glioblastoma stem-like cells , 2011, Nature.

[105]  F. Ginhoux,et al.  Fate Mapping Analysis Reveals That Adult Microglia Derive from Primitive Macrophages , 2010, Science.

[106]  A. Heimberger,et al.  Glioma cancer stem cells induce immunosuppressive macrophages/microglia. , 2010, Neuro-oncology.

[107]  A. Raza,et al.  Pericytes and vessel maturation during tumor angiogenesis and metastasis , 2010, American journal of hematology.

[108]  Thomas Benner,et al.  Phase II study of cediranib, an oral pan-vascular endothelial growth factor receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. , 2010, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[109]  R. Jain,et al.  Angiopoietin-2 Interferes with Anti-VEGFR2–Induced Vessel Normalization and Survival Benefit in Mice Bearing Gliomas , 2010, Clinical Cancer Research.

[110]  Jeffrey W. Pollard,et al.  Macrophage Diversity Enhances Tumor Progression and Metastasis , 2010, Cell.

[111]  Y. Marie,et al.  A New Alternative Mechanism in Glioblastoma Vascularization: Tubular Vasculogenic Mimicry , 2022 .

[112]  T. Mikkelsen,et al.  Bevacizumab alone and in combination with irinotecan in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[113]  R. Jain,et al.  Edema control by cediranib, a vascular endothelial growth factor receptor-targeted kinase inhibitor, prolongs survival despite persistent brain tumor growth in mice. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[114]  S. Cazaubon,et al.  The blood-brain barrier in brain homeostasis and neurological diseases. , 2009, Biochimica et biophysica acta.

[115]  John A Butman,et al.  Phase II trial of single-agent bevacizumab followed by bevacizumab plus irinotecan at tumor progression in recurrent glioblastoma. , 2009, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[116]  Y. Marie,et al.  Polymorphism in the microglial cell-mobilizing CX3CR1 gene is associated with survival in patients with glioblastoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[117]  J. Edwards,et al.  Exploring the full spectrum of macrophage activation , 2008, Nature Reviews Immunology.

[118]  Na Zhang,et al.  Deletion of Vascular Endothelial Growth Factor in myeloid cells accelerates tumorigenesis , 2008, Nature.

[119]  R. Kalluri,et al.  The role of endothelial-to-mesenchymal transition in cancer progression , 2008, British Journal of Cancer.

[120]  J. Kuratsu,et al.  Possible involvement of the M2 anti‐inflammatory macrophage phenotype in growth of human gliomas , 2008, The Journal of pathology.

[121]  David S. Yang,et al.  Incidence and Prognostic Impact of FoxP3+ Regulatory T Cells in Human Gliomas , 2008, Clinical Cancer Research.

[122]  Rakesh K. Jain,et al.  Lessons from multidisciplinary translational trials on anti-angiogenic therapy of cancer , 2008, Nature Reviews Cancer.

[123]  Elise Langenkamp,et al.  Microvascular endothelial cell heterogeneity: general concepts and pharmacological consequences for anti-angiogenic therapy of cancer , 2008, Cell and Tissue Research.

[124]  F. Rossi,et al.  Local self-renewal can sustain CNS microglia maintenance and function throughout adult life , 2007, Nature Neuroscience.

[125]  A. Gregory Sorensen,et al.  Angiogenesis in brain tumours , 2007, Nature Reviews Neuroscience.

[126]  P. Walker,et al.  Brain Microenvironment Promotes the Final Functional Maturation of Tumor-Specific Effector CD8+ T Cells1 , 2007, The Journal of Immunology.

[127]  M. Weller,et al.  Inhibiting TGF-beta signaling restores immune surveillance in the SMA-560 glioma model. , 2007, Neuro-oncology.

[128]  Ricky T. Tong,et al.  Effect of vascular normalization by antiangiogenic therapy on interstitial hypertension, peritumor edema, and lymphatic metastasis: insights from a mathematical model. , 2007, Cancer research.

[129]  Tracy T Batchelor,et al.  AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. , 2007, Cancer cell.

[130]  D. Bigner,et al.  Systemic Anti-CD25 Monoclonal Antibody Administration Safely Enhances Immunity in Murine Glioma without Eliminating Regulatory T Cells , 2006, Clinical Cancer Research.

[131]  David J. Yang,et al.  The role of human glioma-infiltrating microglia/macrophages in mediating antitumor immune responses. , 2006, Neuro-oncology.

[132]  R. Jain,et al.  The role of nitric oxide in tumour progression , 2006, Nature Reviews Cancer.

[133]  A. Friedman,et al.  Increased regulatory T-cell fraction amidst a diminished CD4 compartment explains cellular immune defects in patients with malignant glioma. , 2006, Cancer research.

[134]  C. Kuo,et al.  Cellular changes in normal blood capillaries undergoing regression after inhibition of VEGF signaling. , 2006, American journal of physiology. Heart and circulatory physiology.

[135]  K. Plate,et al.  The Role of Angiopoietins During Angiogenesis in Gliomas , 2005, Brain pathology.

[136]  J. Sotelo,et al.  Blockage of angiotensin II type I receptor decreases the synthesis of growth factors and induces apoptosis in C6 cultured cells and C6 rat glioma , 2005, British Journal of Cancer.

[137]  R. Jain Normalization of Tumor Vasculature: An Emerging Concept in Antiangiogenic Therapy , 2005, Science.

[138]  Lei Xu,et al.  Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. , 2004, Cancer cell.

[139]  E. Neuwelt Mechanisms of Disease: The Blood-Brain Barrier , 2004, Neurosurgery.

[140]  M. Esiri,et al.  Immunohistological study of mononuclear cell infiltrate in malignant gliomas , 2004, Acta Neuropathologica.

[141]  L. Benjamin,et al.  Angiogenesis: Tumorigenesis and the angiogenic switch , 2003, Nature Reviews Cancer.

[142]  W. Leenders,et al.  Vessel co-option: how tumors obtain blood supply in the absence of sprouting angiogenesis. , 2002, Endothelium : journal of endothelial cell research.

[143]  Till Acker,et al.  Synergism between vascular endothelial growth factor and placental growth factor contributes to angiogenesis and plasma extravasation in pathological conditions , 2001, Nature Medicine.

[144]  P. Carmeliet,et al.  Angiogenesis in cancer and other diseases , 2000, Nature.

[145]  Stanley J. Wiegand,et al.  Vascular-specific growth factors and blood vessel formation , 2000, Nature.

[146]  M. Westphal,et al.  Levels of vascular endothelial growth factor, hepatocyte growth factor/scatter factor and basic fibroblast growth factor in human gliomas and their relation to angiogenesis , 1999, International journal of cancer.

[147]  D. Carbone,et al.  Vascular endothelial growth factor inhibits the development of dendritic cells and dramatically affects the differentiation of multiple hematopoietic lineages in vivo. , 1998, Blood.

[148]  D. Carbone,et al.  Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells , 1996, Nature Medicine.

[149]  R. Jain,et al.  During angiogenesis, vascular endothelial growth factor regulate natural killer cell adhesion to tumor endothelium , 1996, Nature Medicine.

[150]  K. Gollahon,et al.  Macrophages in experimental and human brain tumors. Part 2: studies of the macrophage content of human brain tumors. , 1979, Journal of neurosurgery.