Fully Subtractive Algorithm, Tribonacci numeration and connectedness of discrete planes (Numeration and Substitution 2012)
暂无分享,去创建一个
[1] Valentin E. Brimkov,et al. Connectivity of discrete planes , 2004, Theor. Comput. Sci..
[2] Jean-Luc Toutant,et al. On the Connectedness of Rational Arithmetic Discrete Hyperplanes , 2006, DGCI.
[3] Robbert Fokkink,et al. On Schweiger’s problems on fully subtractive algorithms , 2011 .
[4] Tomasz Nowicki,et al. Infinite clusters and critical values in two-dimensional circle percolation , 1989 .
[5] Jean-Pierre Reveillès. Géométrie discrète, calcul en nombres entiers et algorithmique , 1991 .
[6] Jean-Luc Toutant,et al. Minimal arithmetic thickness connecting discrete planes , 2009, Discret. Appl. Math..
[7] Cor Kraaikamp,et al. Ergodic properties of a dynamical system arising from percolation theory , 1995, Ergodic Theory and Dynamical Systems.
[8] Jean-Luc Toutant,et al. On the Connecting Thickness of Arithmetical Discrete Planes , 2009, DGCI.
[9] Eric Andres,et al. Discrete Analytical Hyperplanes , 1997, CVGIP Graph. Model. Image Process..
[10] Boris Solomyak,et al. Finite beta-expansions , 1992, Ergodic Theory and Dynamical Systems.
[11] Luca Q. Zamboni,et al. Fine and Wilf words for any periods , 2003 .
[12] Fritz Schweiger,et al. Multidimensional continued fractions , 2000 .
[13] Yan Gérard. Periodic graphs and connectivity of the rational digital hyperplanes , 2002, Theor. Comput. Sci..