Spaceborne SAR Systems with Digital Beamforming and Reflector Antenna

Contactless information retrieval using electromagnetic waves plays an increasingly important role for scientific and industrial progress. In particular the synthetic aperture radar (SAR) principle, numbered among the imaging techniques, nowadays belongs to the standard-repertoire of civil and military Earth observation. Future SAR systems, whose performance significantly depends on the employed hardware as well as the data processing, shall map increasingly large areas in shorter and shorter time intervals. The work at hand deals with sensor systems, whose two main parts encompass antenna techniques, as well as the subsequent analog and digital signal processing. Here, the focus lies on digital beamforming techniques, enabling an efficient operation of the SAR sensor. For this, space-time adaptive algorithms are derived, which are suitable to minimize the system noise of the sensor and to suppress spatial interference. These algorithms are simulated using the example of a spaceborne SAR system, where the innovative concept of a large unfoldable reflector in combination with a digital feed array is employed. The purpose of such a radar type is to digitize the electromagnetic signal almost immediately after the receiver, in order to ensure the maximal flexibility of the SAR system and to save costs for expensive analog electronics at the same time. The second emphasis of this work deals with optimization aspects, where amongst others a new method is proposed, which allows to mitigate an inherent problematic of such reflector-feed-array constellations. Since in the event of a failure of a single or multiple elements of the feed array a blind spot in the field of view is generated, as solution a defocused reflector antenna concept is proposed. Such an antenna concept combines the merit of planar array antennas, namely the preservation of the functionality in case of an antenna element failure, with the advantage of unfurlable reflector antennas, which is the realization of large apertures.

[1]  Christoph Schaefer,et al.  Frontend Development for the High Resolution Wide Swath SAR , 2008 .

[2]  Charles Elachi,et al.  SIR-B-The Second Shuttle Imaging Radar Experiment , 1986, IEEE Transactions on Geoscience and Remote Sensing.

[3]  John C. Curlander,et al.  Synthetic Aperture Radar: Systems and Signal Processing , 1991 .

[4]  C. Heer,et al.  Digital beam forming synthetic aperture radar , 2004, 34th European Microwave Conference, 2004..

[5]  V. S. Verba,et al.  RUSSIAN SPACEBORNE IMAGING RADARS : SCIENTIFIC AND TECHNICAL ACHIEVEMENTS AND PRIORITY PERSPECTIVES OF DEVELOPMENT , 2005 .

[6]  M. Rast ESA's future plans for Earth observation from polar orbit , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[7]  N. Sultan,et al.  A dual-polarized reconfigurable-beam antenna for the DSAR synthetic aperture radar , 1996, IEEE Antennas and Propagation Society International Symposium. 1996 Digest.

[8]  Gerhard Krieger,et al.  Multidimensional Waveform Encoding: A New Digital Beamforming Technique for Synthetic Aperture Radar Remote Sensing , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[9]  Werner Wiesbeck,et al.  Digital beamforming in SAR systems , 2003, IEEE Trans. Geosci. Remote. Sens..

[10]  Gerhard Krieger,et al.  Digital Beamforming on Receive: Techniques and Optimization Strategies for High-Resolution Wide-Swath SAR Imaging , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[11]  M. Werner Shuttle radar topography mission (SRTM): experience with the X-band SAR interferometer , 2001, 2001 CIE International Conference on Radar Proceedings (Cat No.01TH8559).

[12]  P. Ingerson,et al.  The analysis of deployable umbrella parabolic reflectors , 1970 .

[13]  G. Krieger,et al.  Advanced synthetic aperture radar based on digital beamforming and waveform diversity , 2008, 2008 IEEE Radar Conference.

[14]  Marwan Younis,et al.  MIMO-SAR and the orthogonality confusion , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[15]  D. Evans,et al.  The SIR-C/X-SAR mission , 1993, Proceedings of IGARSS '93 - IEEE International Geoscience and Remote Sensing Symposium.

[16]  Yuhsyen Shen,et al.  The DESDynI synthetic aperture radar array-fed reflector antenna , 2010, 2010 IEEE International Symposium on Phased Array Systems and Technology.

[17]  R. Werninghaus,et al.  The TERRASAR-X active phased array antenna , 2003, IEEE International Symposium on Phased Array Systems and Technology, 2003..

[18]  Sigurd Huber,et al.  Digital Beam Forming Techniques for Spaceborne Reflector SAR Systems , 2010 .

[19]  R. Mittra,et al.  Secondary pattern and focal region distribution of reflector antennas under wide-angle scanning , 1982 .

[20]  Boris Murmann,et al.  A/D converter trends: Power dissipation, scaling and digitally assisted architectures , 2008, 2008 IEEE Custom Integrated Circuits Conference.

[21]  Gerhard Krieger,et al.  Performance Optimization of the Reflector Antenna for the Digital Beam-Forming SAR System , 2009 .

[22]  P. P. Ewald Introduction to the dynamical theory of X-ray diffraction , 1969 .

[23]  Gerhard Krieger,et al.  Digital Beam-Forming reconfigurable Radar System demonstrator , 2012, 2012 IEEE International Geoscience and Remote Sensing Symposium.

[24]  Delwyn Moller,et al.  Ka-band Digital Beamforming and SweepSAR Demonstration for Ice and Solid Earth Topography , 2010 .

[25]  Gerhard Krieger,et al.  MIMO-SAR: Opportunities and Pitfalls , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[26]  A. D. Olver,et al.  Variable beamwidth reflector antenna by feed defocusing , 1995 .

[27]  Werner Wiesbeck,et al.  A Novel OFDM Chirp Waveform Scheme for Use of Multiple Transmitters in SAR , 2013, IEEE Geoscience and Remote Sensing Letters.

[28]  Gerhard Krieger,et al.  Adaptive scan-on-receive based on spatial spectral estimation for high-resolution, wide-swath Synthetic Aperture Radar , 2009, 2009 IEEE International Geoscience and Remote Sensing Symposium.

[29]  Gerhard Krieger,et al.  Digital Beamforming for HRWS-SAR Imaging: System Design, Performance and Optimization Strategies , 2006, 2006 IEEE International Symposium on Geoscience and Remote Sensing.

[30]  Gerhard Krieger,et al.  TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[31]  R. Lange Cassini-Huygens Mission Overview and Recent Science Results , 2008, 2008 IEEE Aerospace Conference.

[32]  Margaret Cheney,et al.  Problems in synthetic-aperture radar imaging , 2009 .

[33]  R. Klemm Principles of Space-Time Adaptive Processing , 2002 .

[34]  R. Raney SNR in SAR , 1985 .

[35]  Per Ingvarson,et al.  The Planar Array Antennas for the European Remote Sensing Satellite ERS-1 , 1988, 1988 18th European Microwave Conference.

[36]  Sigurd Huber,et al.  Optimization Aspects of the Reflector Antenna for the Digital Beam-Forming SAR System , 2010 .

[37]  J. E. Bartow,et al.  Progressive Communication Satellite Systems Design , 1960, IRE Transactions on Military Electronics.

[38]  M. A. Brown,et al.  Wide-swath SAR , 1992 .

[39]  G. D'Elia,et al.  Power synthesis of reconfigurable conformal arrays with phase-only control , 1998 .

[40]  Gerhard Krieger,et al.  Digital beam forming concepts with application to spaceborne reflector SAR systems , 2010, 11-th INTERNATIONAL RADAR SYMPOSIUM.

[41]  A. Papoulis,et al.  Generalized sampling expansion , 1977 .

[42]  Arthur A. Oliner,et al.  Phased array antennas , 1972 .

[43]  Gerhard Krieger,et al.  Tandem-L: A mission proposal for monitoring dynamic earth processes , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[44]  J. McWhirter,et al.  Adaptive algorithms in the space and time domains , 1983 .

[45]  B. A. D. H. Brandwood A complex gradient operator and its applica-tion in adaptive array theory , 1983 .

[46]  Gerhard Krieger,et al.  Advanced Concepts for Ultra-Wide-Swath SAR Imaging , 2008 .

[47]  Sigurd Huber,et al.  Performance Comparison of Reflector- and Planar-Antenna Based Digital Beam-Forming SAR , 2009 .

[48]  S. Moseley,et al.  On-axis defocus characteristics of the paraboloidal reflector , 1955 .

[49]  Errol C. Caby An Introduction to Statistical Signal Processing , 2006, Technometrics.

[50]  G. Krieger,et al.  Digital beamforming and MIMO SAR: Review and new concepts , 2012 .

[51]  Sigurd Huber,et al.  A novel digital beam-forming concept for spaceborne reflector SAR Systems , 2009, 2009 European Radar Conference (EuRAD).

[52]  The resolution limits of the imaging of conducting bodies using multistatic scattering , 1980 .

[53]  J. A. Salmon,et al.  An X- Band Reflect-Array with Integrated PIN Diodes , 1974 .

[54]  L.H. Sibul,et al.  Structure of a multibeam adaptive space-time processor , 1982, Proceedings of the IEEE.

[55]  Gerhard Krieger,et al.  Spaceborne Reflector SAR Systems with Digital Beamforming , 2012, IEEE Transactions on Aerospace and Electronic Systems.

[56]  Zhenfang Li,et al.  Performance improvement for constellation SAR using signal processing techniques , 2006, IEEE Transactions on Aerospace and Electronic Systems.

[57]  D. Stumpf,et al.  Radar systems , 2018 .

[58]  F. Ares,et al.  Phase-only control of antenna sum and shaped patterns through null perturbation , 2001 .

[59]  Jian Li,et al.  On robust Capon beamforming and diagonal loading , 2003, IEEE Trans. Signal Process..

[60]  J. Louet,et al.  ENVISAT mission and system , 1999, IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS'99 (Cat. No.99CH36293).

[61]  Robert J. Mailloux,et al.  Phased Array Antenna Handbook , 1993 .

[62]  Jill Smyth,et al.  RADARSAT-2 program update , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[63]  Werner Wiesbeck,et al.  Experimental Performance Investigation of Digital Beamforming on Synthetic Aperture Radar , 2008, IGARSS 2008 - 2008 IEEE International Geoscience and Remote Sensing Symposium.

[64]  R. Yang Illuminating curved passive reflector with defocused parabolic antenna , 1958 .

[65]  R. Bansal,et al.  Antenna theory; analysis and design , 1984, Proceedings of the IEEE.

[66]  R. Bamler,et al.  Comments on SAR signal and noise equations , 1994, Proceedings of IGARSS '94 - 1994 IEEE International Geoscience and Remote Sensing Symposium.

[67]  G. Krieger,et al.  SweepSAR: Beam-forming on receive using a reflector-phased array feed combination for spaceborne SAR , 2009, 2009 IEEE Radar Conference.

[68]  J. S. Lee,et al.  A review of polarimetry in the context of synthetic aperture radar: concepts and information extraction , 2004 .

[69]  S. Buckreuss,et al.  The German satellite mission TerraSAR-X , 2008, IEEE Aerospace and Electronic Systems Magazine.

[70]  R. Jordan The Seasat-A synthetic aperture radar system , 1980, IEEE Journal of Oceanic Engineering.

[71]  N. Bojarski The far field in terms of the spatial Fourier transform of the sources and its implications on the inverse problem , 1985 .

[72]  C. Elachi,et al.  Shuttle Imaging Radar-A (SIR-A) experiment , 1982 .

[73]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[74]  Michael Ludwig,et al.  Ka-Band SAR for Spaceborne Applications based on Scan-on- Receive Techniques , 2008 .

[75]  Eduardo Carrasco,et al.  Design of dual-reflectarray antenna for beam scanning , 2010, 2010 IEEE Antennas and Propagation Society International Symposium.

[76]  M.W. Thomson,et al.  The AstroMesh deployable reflector , 1999, IEEE Antennas and Propagation Society International Symposium. 1999 Digest. Held in conjunction with: USNC/URSI National Radio Science Meeting (Cat. No.99CH37010).

[77]  Marwan Younis,et al.  Tandem-L: And innovative interferometric and polarimetric SAR mission to monitor earth system dynamics with high resolution , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[78]  Kazuyo Tanaka,et al.  Japanese Earth Resources Satellite-1 synthetic aperture radar , 1991, Proc. IEEE.

[79]  R. O. Schmidt,et al.  Multiple emitter location and signal Parameter estimation , 1986 .

[80]  David Koebel,et al.  OHB PLATFORMS FOR CONSTELLATION SATELLITES , 2005 .

[81]  B. Grafmuller,et al.  The TerraSAR-X antenna system , 2005, IEEE International Radar Conference, 2005..

[82]  O. Besson,et al.  Steering vector errors and diagonal loading , 2004 .

[83]  J. Kong,et al.  Theory of microwave remote sensing , 1985 .

[84]  J. Maxwell VIII. A dynamical theory of the electromagnetic field , 1865, Philosophical Transactions of the Royal Society of London.

[85]  Anthony Freeman,et al.  SAR calibration: an overview , 1992, IEEE Trans. Geosci. Remote. Sens..

[86]  F. Ulaby,et al.  Handbook of radar scattering statistics for terrain , 1989 .

[87]  J. Huang,et al.  Analysis of a microstrip reflectarray antenna for microspacecraft applications , 1995 .

[88]  Gerhard Krieger,et al.  Multidimensional waveform encoding for synthetic aperture radar remote sensing , 2007 .

[89]  Ovidio Mario Bucci,et al.  Synthesis technique for scanning and/or reconfigurable beam reflector antennas with phase-only control , 1996 .

[90]  G. Krieger,et al.  A Dual-Focus Reflector Antenna for Spaceborne SAR Systems With Digital Beamforming , 2013, IEEE Transactions on Antennas and Propagation.

[91]  Marc Rodriguez-Cassola,et al.  Radiometric resolution optimization for future SAR systems , 2004, IGARSS 2004. 2004 IEEE International Geoscience and Remote Sensing Symposium.

[92]  Jennifer Urner,et al.  Antenna Theory And Design , 2016 .

[93]  Stephen P. Boyd,et al.  Robust minimum variance beamforming , 2005, IEEE Transactions on Signal Processing.

[94]  A. Haar Zur Theorie der orthogonalen Funktionensysteme , 1910 .

[95]  Manabu Watanabe,et al.  ALOS PALSAR: A Pathfinder Mission for Global-Scale Monitoring of the Environment , 2007, IEEE Transactions on Geoscience and Remote Sensing.

[96]  Gerhard Krieger,et al.  Advanced digital beamforming concepts for future SAR systems , 2010, 2010 IEEE International Geoscience and Remote Sensing Symposium.

[97]  F. Fitzek The Earth Seen from Space by Radar Remote Sensing : A Vision for 2025 , 2013 .

[98]  Anthony Freeman,et al.  Radar designs for the DESDynI mission , 2009, 2009 IEEE Radar Conference.

[99]  P. Lombardo A multichannel spaceborne radar for the COSMO-Skymed Satellite Constellation , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[100]  G. Krieger,et al.  The tandem-L mission proposal: Monitoring earth's dynamics with high resolution SAR interferometry , 2009, 2009 IEEE Radar Conference.

[101]  Giovanni Toso,et al.  Analysis of a dual-reflect array antenna , 2011 .

[102]  N. O'Donoughue,et al.  Time Reversal Synthetic Aperture Radar Imaging In Multipath , 2007, 2007 Conference Record of the Forty-First Asilomar Conference on Signals, Systems and Computers.

[103]  F. Ares,et al.  Phase-only synthesis of continuous linear aperture distribution patterns with asymmetric side lobes , 1998 .

[104]  Satoru Ozawa,et al.  30m class lightweight large deployable reflector , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[105]  H. Sizun Radio Wave Propagation for Telecommunication Applications (Foundations of Engineering Mechanics) , 2004 .

[106]  Paul Siqueira,et al.  The "Myth" of the minimum SAR antenna area constraint , 2000, IEEE Trans. Geosci. Remote. Sens..