An Agent-Based Approach to Adapt Multimedia Web Content in Ubiquitous Environment

Nowadays, Ubiquitous Computing allows a high number of multimedia contents to be accessible anywhere and anytime by using several devices, also characterized from limited computational and storage resources. To support users in multimedia choices, different recommender systems have been proposed in the past, but any of them considers the effects of the exploited devices, even though users show different behaviours in presence of different devices. This chaptertries to give a contribution in this setting, proposing a new agent-based recommender system in which each device is provided with a client agent able to monitor the user’s behaviour performed on that device. A unique server agent associated with that user collects from his/her devices this information to build a global profile, periodically returned to the client agents. Finally, recommendations of multimedia resources are generated from the collaboration among a recommender agent, associated with a Web site, and the client agent running on the device currently exploited by the user. Some experiments confirm the high quality of the recommendations generated by the proposed approach. DOI: 10.4018/978-1-61350-107-8.ch003

[1]  Pedro M. Domingos,et al.  Adaptive Web Navigation for Wireless Devices , 2001, IJCAI.

[2]  Paul Resnick,et al.  Recommender systems , 1997, CACM.

[3]  Enrico Blanzieri,et al.  Implicit: an agent-based recommendation system for web search , 2005, AAMAS '05.

[4]  Nikos Manouselis,et al.  Analysis and Classification of Multi-Criteria Recommender Systems , 2007, World Wide Web.

[5]  Liliana Ardissono,et al.  Intrigue: Personalized recommendation of tourist attractions for desktop and hand held devices , 2003, Appl. Artif. Intell..

[6]  Sheng Zhong,et al.  Privacy-preserving algorithms for distributed mining of frequent itemsets , 2007, Inf. Sci..

[7]  Jinghua Huang,et al.  A Survey of E-Commerce Recommender Systems , 2007, 2007 International Conference on Service Systems and Service Management.

[8]  Brian Culver Recommender system for auction sites , 2004 .

[9]  C. Murray Woodside,et al.  Evaluating the Scalability of Distributed Systems , 2000, IEEE Trans. Parallel Distributed Syst..

[10]  Licia Capra,et al.  diffeRS: A Mobile Recommender Service , 2010, 2010 Eleventh International Conference on Mobile Data Management.

[11]  Upkar Varshney,et al.  Location management for mobile commerce applications in wireless Internet environment , 2003, TOIT.

[12]  Francisco J. García-Peñalvo,et al.  An Adaptive e-Commerce System Definition , 2002, AH.

[13]  Greg Linden,et al.  Amazon . com Recommendations Item-to-Item Collaborative Filtering , 2001 .

[14]  David M. Pennock,et al.  CROC: A New Evaluation Criterion for Recommender Systems , 2005, Electron. Commer. Res..

[15]  Bradley N. Miller,et al.  PocketLens: Toward a personal recommender system , 2004, TOIS.

[16]  Raymond Y. K. Lau,et al.  The State of the Art in Adaptive Information Agents , 2002, Int. J. Artif. Intell. Tools.

[17]  Pattie Maes,et al.  Agents as Mediators in Electronic Commerce , 1999 .

[18]  Steven McCanne,et al.  Scaling end-to-end multicast transports with a topologically-sensitive group formation protocol , 1999, Proceedings. Seventh International Conference on Network Protocols.

[19]  Yang Yu,et al.  Blind Assessment of Wavelet-Compressed Images Based On Subband Statistics of Natural Scenes , 2014, Int. J. Adv. Pervasive Ubiquitous Comput..

[20]  Antony I. T. Rowstron,et al.  Pastry: Scalable, Decentralized Object Location, and Routing for Large-Scale Peer-to-Peer Systems , 2001, Middleware.

[21]  Jonathan L. Herlocker,et al.  Evaluating collaborative filtering recommender systems , 2004, TOIS.

[22]  Giuseppe M. L. Sarnè,et al.  MUADDIB: A distributed recommender system supporting device adaptivity , 2009, TOIS.

[23]  Mark S. Ackerman,et al.  Privacy in e-commerce: examining user scenarios and privacy preferences , 1999, EC '99.

[24]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[25]  Shuk Ying Ho,et al.  The attraction of personalized service for users in mobile commerce: an empirical study , 2002, SECO.

[26]  Upkar Varshney,et al.  Mobile Commerce: A New Frontier , 2000, Computer.

[27]  Saeed Shiry Ghidary,et al.  Usage-based web recommendations: a reinforcement learning approach , 2007, RecSys '07.

[28]  Varuna Godara Strategic Pervasive Computing Applications: Emerging Trends , 2010 .

[29]  Carla Simone,et al.  Agent Technologies for the Development of Adaptive Web Stores , 2001, AgentLink.

[30]  Robin D. Burke,et al.  Hybrid Recommender Systems: Survey and Experiments , 2002, User Modeling and User-Adapted Interaction.

[31]  Fotis Kitsios,et al.  A Roadmap to the Introduction of Pervasive Information Systems in Healthcare , 2010, Int. J. Adv. Pervasive Ubiquitous Comput..

[32]  Sung Joo Park,et al.  MONERS: A news recommender for the mobile web , 2007, Expert Syst. Appl..

[33]  Yoon Ho Cho,et al.  A user-oriented contents recommendation system in peer-to-peer architecture , 2004, Expert Syst. Appl..

[34]  Giuseppe M. L. Sarnè,et al.  MASHA: A multi-agent system handling user and device adaptivity of Web sites , 2006, User Modeling and User-Adapted Interaction.

[35]  Natalia Stash,et al.  AHA! the next generation , 2002, HYPERTEXT '02.

[36]  Fabrizio Silvestri,et al.  Dynamic personalization of web sites without user intervention , 2007, CACM.

[37]  John F. Canny,et al.  Collaborative filtering with privacy , 2002, Proceedings 2002 IEEE Symposium on Security and Privacy.

[38]  Michael J. Pazzani,et al.  User Modeling for Adaptive News Access , 2000, User Modeling and User-Adapted Interaction.

[39]  Lars Erik Holmquist,et al.  When Media Gets Wise: collaborative filtering with mobile media agents , 2006, IUI '06.

[40]  Rossano Schifanella,et al.  MobHinter: epidemic collaborative filtering and self-organization in mobile ad-hoc networks , 2008, RecSys '08.

[41]  John Riedl,et al.  Analysis of recommendation algorithms for e-commerce , 2000, EC '00.

[42]  David R. Karger,et al.  Chord: A scalable peer-to-peer lookup service for internet applications , 2001, SIGCOMM '01.

[43]  Josep Lluís de la Rosa i Esteva,et al.  A Taxonomy of Recommender Agents on the Internet , 2003, Artificial Intelligence Review.

[44]  Mauro Brunato,et al.  PILGRIM: A location broker and mobility-aware recommendation system , 2003, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[45]  Jani Mäntyjärvi,et al.  Managing Context Information in Mobile Devices , 2003, IEEE Pervasive Comput..

[46]  John Riedl,et al.  E-Commerce Recommendation Applications , 2004, Data Mining and Knowledge Discovery.

[47]  Pattie Maes,et al.  Agents as Mediators in Electronic Commerce , 1998, Electron. Mark..

[48]  Ben Y. Zhao,et al.  Tapestry: a fault-tolerant wide-area application infrastructure , 2002, CCRV.

[49]  Mark Weiser The computer for the 21st century , 1991 .

[50]  Paul Hamilton,et al.  Mobile Enabled RFID-GPS Based Bus Tracking System , 2014, Int. J. Adv. Pervasive Ubiquitous Comput..

[51]  Artur Lugmayr Media in the Ubiquitous Era: Ambient, Social and Gaming Media , 2011 .

[52]  Amund Tveit,et al.  Peer-to-peer based recommendations for mobile commerce , 2001, WMC '01.

[53]  R. W. Peterson,et al.  OPTICAL INTERFEROMETRY OF SURFACES , 1991 .

[54]  Yi Wang,et al.  Mining Data Streams with Skewed Distribution based on Ensemble Method , 2012, Int. J. Adv. Pervasive Ubiquitous Comput..

[55]  Raymond J. Mooney,et al.  Content-boosted collaborative filtering for improved recommendations , 2002, AAAI/IAAI.