Dispersion Diagram of Trigonal Piezoelectric Phononic Structures with Langasite Inclusions

The dispersion relation of elastic Bloch waves in 1-3 piezoelectric phononic structures (PPnSs) with Langasite (La3Ga5SiO14) inclusions in a polymeric matrix is reported. Langasite presents promising material properties, for instance good temperature behaviour, high piezoelectric coupling, low acoustic loss and high quality factor. Furthermore, Langasite belongs to the point group 32 and has a trigonal structure. Thus, the 2-D bulk wave propagation in periodic systems with Langasite inclusions cannot be decoupled into XY and Z modes. The improved plane wave expansion (IPWE) is used to obtain the dispersion diagram of the bulk Bloch waves in 1-3 PPnSs considering the classical elasticity theory and D3 symmetry. Full band gaps are obtained for a broad range of frequency. The piezoelectricity enhances significantly the band gap widths and opens up a narrow band gap in lower frequencies for a filling fraction of 0.5. This study should be useful for surface acoustic wave (SAW) filter and 1-3 piezocomposite transducer design using PPnSs with Langasite.

[1]  A. Bell,et al.  Expanding the application space for piezoelectric materials , 2021, APL Materials.

[2]  Xiaodong Huang,et al.  Creating acoustic topological insulators through topology optimization , 2021 .

[3]  Gyani Shankar Sharma,et al.  Sound scattering by a bubble metasurface , 2020 .

[4]  A. Serpa,et al.  Flexural wave band gaps in a ternary periodic metamaterial plate using the plane wave expansion method , 2020 .

[5]  M. Ruzzene,et al.  Dynamics of Quasiperiodic Beams , 2020, Crystals.

[6]  Gyani Shankar Sharma,et al.  Acoustic Performance of a Periodically Voided Viscoelastic Medium With Uncertainty in Design Parameters , 2020 .

[7]  A. Serpa,et al.  Elastic wave band gaps in a three-dimensional periodic metamaterial using the plane wave expansion method , 2020 .

[8]  B. Youn,et al.  A graded phononic crystal with decoupled double defects for broadband energy localization , 2020 .

[9]  E. Miranda,et al.  Modelling Propagating Bloch Waves in Magnetoelectroelastic Phononic Structures with Kagomé Lattice Using the Improved Plane Wave Expansion , 2020, Crystals.

[10]  A. Fabro,et al.  Uncertainties in the attenuation performance of a multi-frequency metastructure from additive manufacturing , 2020, Mechanical Systems and Signal Processing.

[11]  Gyani Shankar Sharma,et al.  On superscattering of sound waves by a lattice of disk-shaped cavities in a soft material , 2020 .

[12]  Li Cheng,et al.  Impaired sound radiation in plates with periodic tunneled Acoustic Black Holes , 2020 .

[13]  M. Ruzzene,et al.  An analytical framework for locally resonant piezoelectric metamaterial plates , 2020 .

[14]  Alex Skvortsov,et al.  Acoustic performance of periodic steel cylinders embedded in a viscoelastic medium , 2019, Journal of Sound and Vibration.

[15]  N. Fang,et al.  Mechanical Metamaterials and Their Engineering Applications , 2019, Advanced Engineering Materials.

[16]  Denghui Qian Bandgap properties of a piezoelectric phononic crystal nanobeam based on nonlocal theory , 2018, Journal of Materials Science.

[17]  J.M.C. Dos Santos,et al.  Evanescent Bloch waves and complex band structure in magnetoelectroelastic phononic crystals , 2018, Mechanical Systems and Signal Processing.

[18]  S. Zouari,et al.  Flexural wave band gaps in metamaterial plates: A numerical and experimental study from infinite to finite models , 2018, Journal of Sound and Vibration.

[19]  Haifeng Zhang,et al.  Langasite crystal based pressure sensor with temperature compensation , 2018, Sensors and Actuators A: Physical.

[20]  Xiaoning Jiang,et al.  Recent Developments in Piezoelectric Crystals , 2018, Journal of the Korean Ceramic Society.

[21]  T. Mocek,et al.  Crystal growth, low-temperature spectroscopy and multi-watt laser operation of Yb:Ca3NbGa3Si2O14 , 2018 .

[22]  F. Montero de Espinosa,et al.  Design of piezoelectric piston-like piezoelectric transducers based on a phononic crystal , 2018 .

[23]  Xiaoyu Zheng,et al.  Additive Manufacturing and size-dependent mechanical properties of three-dimensional microarchitected, high-temperature ceramic metamaterials , 2018 .

[24]  José Maria Campos dos Santos,et al.  Band Structure in Carbon Nanostructure Phononic Crystals , 2017 .

[25]  E. Miranda,et al.  Complete Band Gaps in Nano-Piezoelectric Phononic Crystals , 2017 .

[26]  Francisco Montero de Espinosa,et al.  The Use of Phononic Crystals to Design Piezoelectric Power Transducers , 2017, Sensors.

[27]  Guoliang Huang,et al.  An improved fast plane wave expansion method for topology optimization of phononic crystals , 2017 .

[28]  Harald Giessen,et al.  Two-photon direct laser writing of ultracompact multi-lens objectives , 2016, Nature Photonics.

[29]  Saulius Juodkazis,et al.  Ultrafast laser processing of materials: from science to industry , 2016, Light: Science & Applications.

[30]  Gyani Shankar Sharma,et al.  Acoustic performance of periodic composite materials , 2015 .

[31]  Y. Yong,et al.  Langatate and langasite microacoustic gyro sensors , 2014, 2014 IEEE International Ultrasonics Symposium.

[32]  Tony Jun Huang,et al.  Tunable phononic crystals with anisotropic inclusions , 2011 .

[33]  S. Mann,et al.  Biopolymer-mediated synthesis of anisotropic piezoelectric nanorods. , 2010, Chemical communications.

[34]  O. Bou Matar,et al.  Tunable magnetoelastic phononic crystals , 2009 .

[35]  Wolfram Wersing,et al.  Piezoelectricity: Evolution and Future of a Technology , 2008 .

[36]  Yuesheng Wang,et al.  Wave band gaps in two-dimensional piezoelectric/piezomagnetic phononic crystals , 2008 .

[37]  J. Turner,et al.  Electroelastic Effect of Thickness Mode Langasite Resonators , 2007, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[38]  Z. Hou,et al.  Convergence problem of plane-wave expansion method for phononic crystals , 2004 .

[39]  Z. Hou,et al.  Phononic crystals containing piezoelectric material , 2004 .

[40]  B. Djafari-Rouhani,et al.  Out-of-plane propagation of elastic waves in two-dimensional phononic band-gap materials. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Sylvain Ballandras,et al.  A full 3D plane-wave-expansion model for 1-3 piezoelectric composite structures. , 2002, The Journal of the Acoustical Society of America.

[42]  H. Fröhlich,et al.  Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN) and La3Ga5.5Ta0.5O14 (LGT) II. Piezoelectric and elastic properties , 2000 .

[43]  R. Heimann,et al.  Czochralski growth and characterization of piezoelectric single crystals with langasite structure: La3Ga5SiO14 (LGS), La3Ga5.5Nb0.5O14 (LGN), and La3Ga5.5Ta0.5O14 (LGT): Part I , 1999 .

[44]  A. Ballato,et al.  Piezoelectricity: old effect, new thrusts , 1995, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[45]  B. Djafari-Rouhani,et al.  Acoustic band structure of periodic elastic composites. , 1993, Physical review letters.

[46]  K. S. V. Dyke Matrices of Piezoelectric, Elastic, and Dielectric Constants , 1950 .