Data-Driven Koopman Controller Synthesis Based on the Extended $\mathcal{H}_{2}$ Norm Characterization

This letter presents a new data-driven controller synthesis based on the Koopman operator and the extended $\mathcal{H}_{2}$ norm characterization of discrete-time linear systems. We model dynamical systems as polytope sets which are derived from multiple data-driven linear models obtained by the finite approximation of the Koopman operator and then used to design robust feedback controllers combined with the $\mathcal{H}_{2}$ norm characterization. The use of the $\mathcal{H}_{2}$ norm characterization is aimed to deal with the model uncertainty that arises due to the nature of the data-driven setting of the problem. The effectiveness of the proposed controller synthesis is investigated through numerical simulations.

[1]  A. Banaszuk,et al.  Linear observer synthesis for nonlinear systems using Koopman Operator framework , 2016 .

[2]  Steven L. Brunton,et al.  Koopman Invariant Subspaces and Finite Linear Representations of Nonlinear Dynamical Systems for Control , 2015, PloS one.

[3]  Clarence W. Rowley,et al.  A Data–Driven Approximation of the Koopman Operator: Extending Dynamic Mode Decomposition , 2014, Journal of Nonlinear Science.

[4]  Stefan Klus,et al.  Koopman operator-based model reduction for switched-system control of PDEs , 2017, Autom..

[5]  P. Schmid,et al.  Dynamic mode decomposition of numerical and experimental data , 2008, Journal of Fluid Mechanics.

[6]  I. Mezić,et al.  Applied Koopmanism. , 2012, Chaos.

[7]  Steven L. Brunton,et al.  On dynamic mode decomposition: Theory and applications , 2013, 1312.0041.

[8]  Naoya Takeishi,et al.  Learning Koopman Invariant Subspaces for Dynamic Mode Decomposition , 2017, NIPS.

[9]  J. Geromel,et al.  Extended H 2 and H norm characterizations and controller parametrizations for discrete-time systems , 2002 .

[10]  Steven L. Brunton,et al.  Data-driven discovery of Koopman eigenfunctions for control , 2017, Mach. Learn. Sci. Technol..

[11]  Steven L. Brunton,et al.  Dynamic Mode Decomposition with Control , 2014, SIAM J. Appl. Dyn. Syst..

[12]  I. Mezić,et al.  Spectral analysis of nonlinear flows , 2009, Journal of Fluid Mechanics.

[13]  Matthew O. Williams,et al.  A kernel-based method for data-driven koopman spectral analysis , 2016 .

[14]  Soumya Kundu,et al.  Learning Deep Neural Network Representations for Koopman Operators of Nonlinear Dynamical Systems , 2017, 2019 American Control Conference (ACC).

[15]  Clarence W. Rowley,et al.  Extending Data-Driven Koopman Analysis to Actuated Systems , 2016 .

[16]  Igor Mezic,et al.  A Data-Driven Koopman Model Predictive Control Framework for Nonlinear Partial Differential Equations , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[17]  Ioannis G Kevrekidis,et al.  Extended dynamic mode decomposition with dictionary learning: A data-driven adaptive spectral decomposition of the Koopman operator. , 2017, Chaos.

[18]  Steven L. Brunton,et al.  Generalizing Koopman Theory to Allow for Inputs and Control , 2016, SIAM J. Appl. Dyn. Syst..

[19]  William Leithead,et al.  Survey of gain-scheduling analysis and design , 2000 .

[20]  Igor Mezic,et al.  Linear predictors for nonlinear dynamical systems: Koopman operator meets model predictive control , 2016, Autom..

[21]  Amit Surana,et al.  Koopman operator based observer synthesis for control-affine nonlinear systems , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[22]  Clarence W. Rowley,et al.  Data-Driven Model Predictive Control using Interpolated Koopman Generators , 2020, SIAM J. Appl. Dyn. Syst..