Centromere studies in the era of 'telomere-to-telomere' genomics.

[1]  J. Simpson,et al.  Simultaneous profiling of chromatin accessibility and methylation on human cell lines with nanopore sequencing , 2020, Nature Methods.

[2]  Sergey Koren,et al.  HiCanu: accurate assembly of segmental duplications, satellites, and allelic variants from high-fidelity long reads , 2020, bioRxiv.

[3]  Chirag Jain,et al.  Weighted minimizer sampling improves long read mapping , 2020, bioRxiv.

[4]  Pavel A. Pevzner,et al.  TandemMapper and TandemQUAST: mapping long reads and assessing/improving assembly quality in extra-long tandem repeats , 2019, bioRxiv.

[5]  Karen H. Miga,et al.  Human chromosome‐specific aneuploidy is influenced by DNA‐dependent centromeric features , 2019, The EMBO journal.

[6]  Julie M. Behr,et al.  Nanopore sequencing of DNA concatemers reveals higher-order features of chromatin structure , 2019, bioRxiv.

[7]  Charles Cole,et al.  Realizing the potential of full-length transcriptome sequencing , 2019, Philosophical Transactions of the Royal Society B.

[8]  S. Morishita,et al.  Long-read Data Revealed Structural Diversity in Human Centromere Sequences , 2019, bioRxiv.

[9]  P. Pevzner,et al.  centroFlye: Assembling Centromeres with Long Error-Prone Reads , 2019, bioRxiv.

[10]  C. Vollmers,et al.  Complete characterization of the human immune cell transcriptome using accurate full-length cDNA sequencing , 2019, bioRxiv.

[11]  Sergey Koren,et al.  Telomere-to-telomere assembly of a complete human X chromosome , 2019, bioRxiv.

[12]  E. Malinovskaya,et al.  Copy Number Variation of Human Satellite III (1q12) With Aging , 2019, Front. Genet..

[13]  Aaron M. Streets,et al.  μDamID: a microfluidic approach for imaging and sequencing protein-DNA interactions in single cells , 2019, bioRxiv.

[14]  Nathan D. Olson,et al.  Accurate circular consensus long-read sequencing improves variant detection and assembly of a human genome , 2019, Nature Biotechnology.

[15]  Glennis A. Logsdon,et al.  Human Artificial Chromosomes that Bypass Centromeric DNA , 2019, Cell.

[16]  Karen H. Miga,et al.  DNA replication acts as an error correction mechanism to maintain centromere identity by restricting CENP-A to centromeres , 2019, Nature Cell Biology.

[17]  Zev N. Kronenberg,et al.  Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads , 2019, bioRxiv.

[18]  Karen H. Miga,et al.  Centromeric Satellite DNAs: Hidden Sequence Variation in the Human Population , 2019, Genes.

[19]  E. Rogaev,et al.  Classification and monomer-by-monomer annotation dataset of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly , 2019, Data in brief.

[20]  S. Koren,et al.  Reply to ‘Errors in long-read assemblies can critically affect protein prediction’ , 2019, Nature Biotechnology.

[21]  Mick Watson,et al.  Errors in long-read assemblies can critically affect protein prediction , 2019, Nature Biotechnology.

[22]  Nicholas A. Sinnott-Armstrong,et al.  Long-range single-molecule mapping of chromatin accessibility in eukaryotes , 2018, Nature Methods.

[23]  P. De Wulf,et al.  Centromere and Pericentromere Transcription: Roles and Regulation … in Sickness and in Health , 2018, Front. Genet..

[24]  Simona Giunta,et al.  Repetitive Fragile Sites: Centromere Satellite DNA as a Source of Genome Instability in Human Diseases , 2018, Genes.

[25]  S. Schloissnig,et al.  Deep repeat resolution—the assembly of the Drosophila Histone Complex , 2018, Nucleic acids research.

[26]  Angela N. Brooks,et al.  Nanopore native RNA sequencing of a human poly(A) transcriptome , 2018, bioRxiv.

[27]  E. Rogaev,et al.  Classification and monomer-by-monomer annotation of suprachromosomal family 1 alpha satellite higher-order repeats in hg38 human genome assembly , 2018, bioRxiv.

[28]  M. Watson,et al.  Faculty Opinions recommendation of Whale watching with BulkVis: A graphical viewer for Oxford Nanopore bulk fast5 files. , 2018, Faculty Opinions – Post-Publication Peer Review of the Biomedical Literature.

[29]  Shannon M. McNulty,et al.  Alpha satellite DNA biology: finding function in the recesses of the genome , 2018, Chromosome Research.

[30]  Michael D. Blower,et al.  Centromere Biology: Transcription Goes on Stage , 2018, Molecular and Cellular Biology.

[31]  David Haussler,et al.  Linear assembly of a human centromere on the Y chromosome , 2018, Nature Biotechnology.

[32]  Yu Lin,et al.  Assembly of long, error-prone reads using repeat graphs , 2018, Nature Biotechnology.

[33]  Joshua A Udall,et al.  Is It Ordered Correctly? Validating Genome Assemblies by Optical Mapping[OPEN] , 2017, Plant Cell.

[34]  Shannon M. McNulty,et al.  Human Centromeres Produce Chromosome-Specific and Array-Specific Alpha Satellite Transcripts that Are Complexed with CENP-A and CENP-C. , 2017, Developmental cell.

[35]  Heng Li,et al.  Minimap2: pairwise alignment for nucleotide sequences , 2017, Bioinform..

[36]  Shannon M. McNulty,et al.  RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin , 2017, eLife.

[37]  Jonas Korlach,et al.  Discovery and genotyping of structural variation from long-read haploid genome sequence data , 2017, Genome research.

[38]  Brent S. Pedersen,et al.  Nanopore sequencing and assembly of a human genome with ultra-long reads , 2017, Nature Biotechnology.

[39]  Jordan M. Eizenga,et al.  Genome graphs and the evolution of genome inference , 2017, bioRxiv.

[40]  Winston Timp,et al.  Detecting DNA cytosine methylation using nanopore sequencing , 2017, Nature Methods.

[41]  Jordan M. Eizenga,et al.  Mapping DNA Methylation with High Throughput Nanopore Sequencing , 2017, Nature Methods.

[42]  J. Shendure,et al.  The 4D nucleome project , 2017, Nature.

[43]  R. Durbin,et al.  Evaluation of GRCh38 and de novo haploid genome assemblies demonstrates the enduring quality of the reference assembly , 2016, bioRxiv.

[44]  Botond Sipos,et al.  Highly parallel direct RNA sequencing on an array of nanopores , 2016, Nature Methods.

[45]  M. E. Aldrup-MacDonald,et al.  Genomic variation within alpha satellite DNA influences centromere location on human chromosomes with metastable epialleles , 2016, Genome research.

[46]  Ben S. Wittner,et al.  Pericentromeric satellite repeat expansions through RNA-derived DNA intermediates in cancer , 2015, Proceedings of the National Academy of Sciences.

[47]  M. A. Biscotti,et al.  Transcription of tandemly repetitive DNA: functional roles , 2015, Chromosome Research.

[48]  Karen H. Miga,et al.  Utilizing mapping targets of sequences underrepresented in the reference assembly to reduce false positive alignments , 2015, Nucleic acids research.

[49]  D. Cleveland,et al.  DNA Sequence-Specific Binding of CENP-B Enhances the Fidelity of Human Centromere Function. , 2015, Developmental cell.

[50]  Mauro Maggioni,et al.  Genomic Characterization of Large Heterochromatic Gaps in the Human Genome Assembly , 2014, PLoS Comput. Biol..

[51]  M. E. Aldrup-MacDonald,et al.  The Past, Present, and Future of Human Centromere Genomics , 2014, Genes.

[52]  Nicolas Altemose,et al.  Centromere reference models for human chromosomes X and Y satellite arrays , 2013, Genome research.

[53]  Zhaozhi Zhang,et al.  displayHTS: a R package for displaying data and results from high-throughput screening experiments , 2013, Bioinform..

[54]  Alkes L. Price,et al.  Using population admixture to help complete maps of the human genome , 2013, Nature Genetics.

[55]  H. Willard,et al.  Sequences Associated with Centromere Competency in the Human Genome , 2012, Molecular and Cellular Biology.

[56]  Yadong Wang,et al.  PRISM: Pair-read informed split-read mapping for base-pair level detection of insertion, deletion and structural variants , 2012, Bioinform..

[57]  Jeffrey Ross-Ibarra,et al.  Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution , 2012, Genome Biology.

[58]  Kristin A. Maloney,et al.  Functional epialleles at an endogenous human centromere , 2012, Proceedings of the National Academy of Sciences.

[59]  F. Gage,et al.  BRCA1 tumor suppression occurs via heterochromatin mediated silencing , 2011, Nature.

[60]  A. Iafrate,et al.  Aberrant Overexpression of Satellite Repeats in Pancreatic and Other Epithelial Cancers , 2011, Science.

[61]  T. Mikkelsen,et al.  The NIH Roadmap Epigenomics Mapping Consortium , 2010, Nature Biotechnology.

[62]  Tyson A. Clark,et al.  Direct detection of DNA methylation during single-molecule, real-time sequencing , 2010, Nature Methods.

[63]  S. Henikoff,et al.  Major Evolutionary Transitions in Centromere Complexity , 2009, Cell.

[64]  B. Sullivan,et al.  Histone Modifications within the Human X Centromere Region , 2009, PloS one.

[65]  Joshua M. Korn,et al.  Mapping and sequencing of structural variation from eight human genomes , 2008, Nature.

[66]  G. Karpen,et al.  Epigenetic regulation of heterochromatic DNA stability. , 2008, Current opinion in genetics & development.

[67]  S. Yokoyama,et al.  CpG methylation of the CENP‐B box reduces human CENP‐B binding , 2004, The FEBS journal.

[68]  H. Willard,et al.  Analysis of the centromeric regions of the human genome assembly. , 2004, Trends in genetics : TIG.

[69]  Paul T. Groth,et al.  The ENCODE (ENCyclopedia Of DNA Elements) Project , 2004, Science.

[70]  Tom Misteli,et al.  Spatial Positioning A New Dimension in Genome Function , 2004, Cell.

[71]  G. Karpen,et al.  Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin , 2004, Nature Structural &Molecular Biology.

[72]  D. Haussler,et al.  The structure and evolution of centromeric transition regions within the human genome , 2004, Nature.

[73]  D. Higgs,et al.  Acquired somatic ATRX mutations in myelodysplastic syndrome associated with alpha thalassemia (ATMDS) convey a more severe hematologic phenotype than germline ATRX mutations. , 2004, Blood.

[74]  J. Schwartz,et al.  Subnuclear Localization of C/EBPβ Is Regulated by Growth Hormone and Dependent on MAPK* , 2003, Journal of Biological Chemistry.

[75]  J. V. Moran,et al.  Hot L1s account for the bulk of retrotransposition in the human population , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[76]  H. Masumoto,et al.  CENP-B box is required for de novo centromere chromatin assembly on human alphoid DNA , 2002, The Journal of cell biology.

[77]  D. Schindelhauer,et al.  Evidence for a fast, intrachromosomal conversion mechanism from mapping of nucleotide variants within a homogeneous alpha-satellite DNA array. , 2002, Genome research.

[78]  H. Willard,et al.  Alpha-satellite DNA and vector composition influence rates of human artificial chromosome formation. , 2002, Molecular therapy : the journal of the American Society of Gene Therapy.

[79]  K. P. Pauls,et al.  Effects of tissue culture on a highly repetitive DNA sequence (E180 satellite) in Medicago sativa , 2001, Plant Cell, Tissue and Organ Culture.

[80]  E. Winzeler,et al.  Genomic and Genetic Definition of a Functional Human Centromere , 2001, Science.

[81]  S. Henikoff,et al.  The Centromere Paradox: Stable Inheritance with Rapidly Evolving DNA , 2001, Science.

[82]  Valery Shepelev,et al.  Alpha-satellite DNA of primates: old and new families , 2001, Chromosoma.

[83]  S. Rozen,et al.  A physical map of the human Y chromosome , 2001, Nature.

[84]  A. Fisher,et al.  Targeting of Ikaros to pericentromeric heterochromatin by direct DNA binding. , 2000, Genes & development.

[85]  S. Scherer,et al.  Analysis of the monomeric alphoid sequences in the pericentromeric region of human chromosome 7 , 1999, Cytogenetic and Genome Research.

[86]  M. Ehrlich,et al.  Satellite DNA hypomethylation vs. overall genomic hypomethylation in ovarian epithelial tumors of different malignant potential. , 1999, Mutation research.

[87]  K. Sullivan,et al.  Chromatin containing CENP-A and α-satellite DNA is a major component of the inner kinetochore plate , 1997, Current Biology.

[88]  N. Archidiacono,et al.  Structural organization of multiple alphoid subsets coexisting on human chromosomes 1, 4, 5, 7, 9, 15, 18, and 19. , 1996, Genomics.

[89]  S. Henikoff Dosage-dependent modification of position-effect variegation in Drosophila. , 1996, BioEssays : news and reviews in molecular, cellular and developmental biology.

[90]  H. Masumoto,et al.  Distribution of CENP-B boxes reflected in CREST centromere antigenic sites on long-range alpha-satellite DNA arrays of human chromosome 21. , 1994, Human molecular genetics.

[91]  C. Tyler-Smith,et al.  Localization of DNA sequences required for human centromere function through an analysis of rearranged Y chromosomes , 1993, Nature Genetics.

[92]  H. Willard,et al.  Organization and evolution of an alpha satellite DNA subset shared by human chromosomes 13 and 21 , 1993, Journal of Molecular Evolution.

[93]  K. Yoda,et al.  Centromere protein B assembles human centromeric alpha-satellite DNA at the 17-bp sequence, CENP-B box , 1992, The Journal of cell biology.

[94]  H. Willard,et al.  Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. , 1991, Nucleic acids research.

[95]  H. Willard,et al.  Pulsed-field gel analysis of alpha-satellite DNA at the human X chromosome centromere: high-frequency polymorphisms and array size estimate. , 1990, Genomics.

[96]  C. Tyler-Smith,et al.  Y chromosome DNA haplotyping suggests that most European and Asian men are descended from one of two males. , 1990, Genomics.

[97]  H. Willard,et al.  Long-range organization of tandem arrays of alpha satellite DNA at the centromeres of human chromosomes: high-frequency array-length polymorphism and meiotic stability. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[98]  H. Masumoto,et al.  A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite , 1989, The Journal of cell biology.

[99]  H. Willard,et al.  Nucleotide sequence heterogeneity of alpha satellite repetitive DNA: a survey of alphoid sequences from different human chromosomes. , 1987, Nucleic acids research.

[100]  H. Willard,et al.  Genomic organization of alpha satellite DNA on human chromosome 7: evidence for two distinct alphoid domains on a single chromosome , 1987, Molecular and cellular biology.

[101]  H. Willard,et al.  Chromosome-specific alpha satellite DNA: nucleotide sequence analysis of the 2.0 kilobasepair repeat from the human X chromosome. , 1985, Nucleic acids research.

[102]  R. Staden A strategy of DNA sequencing employing computer programs. , 1979, Nucleic acids research.

[103]  L. Manuelidis,et al.  Homology between human and simian repeated DNA , 1978, Nature.

[104]  J. Yunis,et al.  Heterochromatin, Satellite DNA, and Cell Function , 1971, Science.

[105]  J. Gall,et al.  Chromosomal Localization of Mouse Satellite DNA , 1970, Science.

[106]  M. Gonzalez-Garay Introduction to Isoform Sequencing Using Pacific Biosciences Technology (Iso-Seq) , 2016 .

[107]  M. Schatz,et al.  Algorithms Gage: a Critical Evaluation of Genome Assemblies and Assembly Material Supplemental , 2008 .

[108]  Huntington F. Willard,et al.  Chromosome-specific subsets of human alpha satellite DNA: Analysis of sequence divergence within and between chromosomal subsets and evidence for an ancestral pentameric repeat , 2005, Journal of Molecular Evolution.

[109]  F. Setién,et al.  A physical map of the human complement component C6, C7, and C9 genes , 2004, Immunogenetics.

[110]  H. Masumoto,et al.  The role of CENP-B and α-satellite DNA: de novo assembly and epigenetic maintenance of human centromeres , 2004, Chromosome Research.

[111]  E. Bonnefoy,et al.  Transcription factor YY1 associates with pericentromeric gamma-satellite DNA in cycling but not in quiescent (G0) cells. , 2004, Nucleic Acids Research.

[112]  Huntington F. Willard,et al.  Hierarchical order in chromosome-specific human alpha satellite DNA , 1987 .