An HST/WFC3 Thermal Emission Spectrum of the Hot Jupiter HAT-P-7b

Secondary eclipse observations of several of the hottest hot Jupiters show featureless, blackbody-like spectra or molecular emission features, which are consistent with thermal inversions being present in those atmospheres. Theory predicts a transition between warmer atmospheres with thermal inversions and cooler atmospheres without inversions, but the exact transition point is unknown. In order to further investigate this issue, we observed two secondary eclipses of the hot Jupiter HAT-P-7b with the Hubble Space Telescope (HST) WFC3 instrument and combined these data with previous Spitzer and Kepler secondary eclipse observations. The HST and Spitzer data can be well fit by a blackbody with T = 2692 ± 14 K, and the Kepler data point constrains the geometric albedo to A g = 0.077 ± 0.006. We modeled these data with a three-dimensional (3D) GCM and one-dimensional (1D) self-consistent forward models. The 1D models indicate that the atmosphere has a thermal inversion, weak heat redistribution, and water dissociation that limits the range of pressures probed. This result suggests that WFC3 observations of HAT-P-7b and possibly some other ultra-hot Jupiters appear blackbody-like because they probe a region near the tropopause where the atmospheric temperature changes slowly with pressure. Additionally, the 1D models constrain the atmospheric metallicity ($[{\rm{M}}/{\rm{H}}]=-{0.87}_{-0.34}^{+0.38}$) and the carbon-to-oxygen ratio (C/O ≺ 1 at 99% confidence). The solar composition 3D GCM matches the Spitzer data but generally underpredicts the flux in the WFC3 bandpass and cannot reproduce its featureless shape. This discrepancy could be explained by high atmospheric drag or nightside clouds and may be better understood through further observation with the James Webb Space Telescope.

[1]  T. Henning,et al.  MODEL ATMOSPHERES OF IRRADIATED EXOPLANETS: THE INFLUENCE OF STELLAR PARAMETERS, METALLICITY, AND THE C/O RATIO , 2015, 1509.07523.

[2]  M. Tomasko,et al.  The haze and methane distributions on Uranus from HST-STIS spectroscopy , 2009 .

[3]  Nikole K. Lewis,et al.  HAT-P-26b: A Neptune-mass exoplanet with a well-constrained heavy element abundance , 2017, Science.

[4]  H. Schwarz,et al.  A Framework to Combine Low- and High-resolution Spectroscopy for the Atmospheres of Transiting Exoplanets , 2016, 1612.07008.

[5]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[6]  Drake Deming,et al.  Clouds in the atmosphere of the super-Earth exoplanet GJ 1214b , 2013, Nature.

[7]  H. Gail,et al.  Abundances of the elements in the solar system , 2009, 0901.1149.

[8]  M. Ali-Dib Disentangling hot Jupiters formation location from their chemical composition , 2016, 1611.03128.

[9]  Marcell Tessenyi,et al.  Probing the extreme planetary atmosphere of WASP-12b , 2012, 1205.4736.

[10]  Christoph Mordasini,et al.  A FRAMEWORK FOR CHARACTERIZING THE ATMOSPHERES OF LOW-MASS LOW-DENSITY TRANSITING PLANETS , 2013, 1306.4329.

[11]  L. Sromovsky,et al.  Methane on Uranus: The case for a compact CH4 cloud layer at low latitudes and a severe CH4 depletion at high-latitudes based on re-analysis of Voyager occultation measurements and STIS spectroscopy , 2011, 1503.02476.

[12]  Sara Seager,et al.  A PRECISE WATER ABUNDANCE MEASUREMENT FOR THE HOT JUPITER WASP-43b , 2014, 1410.2255.

[13]  Simon Albrecht,et al.  The orbital motion, absolute mass and high-altitude winds of exoplanet HD 209458b , 2010, Nature.

[14]  Vivien Parmentier,et al.  TRANSITIONS IN THE CLOUD COMPOSITION OF HOT JUPITERS , 2016, 1602.03088.

[15]  Jonathan Fortney,et al.  Metal Enrichment Leads to Low Atmospheric C/O Ratios in Transiting Giant Exoplanets , 2016, 1611.08616.

[16]  Christoph Mordasini,et al.  THE IMPRINT OF EXOPLANET FORMATION HISTORY ON OBSERVABLE PRESENT-DAY SPECTRA OF HOT JUPITERS , 2016, 1609.03019.

[17]  UC Berkeley,et al.  HAT-P-11b: A SUPER-NEPTUNE PLANET TRANSITING A BRIGHT K STAR IN THE KEPLER FIELD , 2009, 0901.0282.

[18]  Nikku Madhusudhan,et al.  TOWARD CHEMICAL CONSTRAINTS ON HOT JUPITER MIGRATION , 2014, 1408.3668.

[19]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[20]  Daniel Foreman-Mackey,et al.  emcee: The MCMC Hammer , 2012, 1202.3665.

[21]  I. Hubeny,et al.  Theory for the Secondary Eclipse Fluxes, Spectra, Atmospheres, and Light Curves of Transiting Extrasolar Giant Planets , 2006, astro-ph/0607014.

[22]  M. Holman,et al.  Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 10/09/06 IMPROVED PARAMETERS FOR EXTRASOLAR TRANSITING PLANETS , 2008 .

[23]  E. Agol,et al.  THE STATISTICS OF ALBEDO AND HEAT RECIRCULATION ON HOT EXOPLANETS , 2009, 1001.0012.

[24]  Nikku Madhusudhan,et al.  NO THERMAL INVERSION AND A SOLAR WATER ABUNDANCE FOR THE HOT JUPITER HD 209458B FROM HST/WFC3 SPECTROSCOPY , 2016, 1605.08810.

[25]  R. G. West,et al.  WASP-39b: a highly inflated Saturn-mass planet orbiting a late G-type star , 2011, 1102.1375.

[26]  A. Collier Cameron,et al.  The TRAPPIST survey of southern transiting planets. I. Thirty eclipses of the ultra-short period planet WASP-43 b , 2012, 1201.2789.

[27]  Ansgar Reiners,et al.  A new extensive library of PHOENIX stellar atmospheres and synthetic spectra , 2013, 1303.5632.

[28]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[29]  Department of Physics,et al.  HAT-P-7b: An Extremely Hot Massive Planet Transiting a Bright Star in the Kepler Field , 2008, 0803.0746.

[30]  D. Deming,et al.  SPECTROSCOPIC EVIDENCE FOR A TEMPERATURE INVERSION IN THE DAYSIDE ATMOSPHERE OF HOT JUPITER WASP-33b , 2015, 1505.01490.

[31]  Sara Seager,et al.  Thermal structure of an exoplanet atmosphere from phase-resolved emission spectroscopy , 2014, Science.

[32]  Leslie Hebb,et al.  Spin-orbit angle measurements for six southern transiting planets: New insights into the dynamical origins of hot Jupiters , 2010, 1008.2353.

[33]  Jacob L. Bean,et al.  H− Opacity and Water Dissociation in the Dayside Atmosphere of the Very Hot Gas Giant WASP-18b , 2018, 1801.02489.

[34]  R. G. West,et al.  WASP-12b: THE HOTTEST TRANSITING EXTRASOLAR PLANET YET DISCOVERED , 2008, 0812.3240.

[35]  T. Owen,et al.  Updated Galileo probe mass spectrometer measurements of carbon, oxygen, nitrogen, and sulfur on Jupiter , 2004 .

[36]  N. Cowan,et al.  Revisiting the Energy Budget of WASP-43b: Enhanced Day–Night Heat Transport , 2017, 1709.03502.

[37]  K. Cahoy,et al.  THE ATMOSPHERES OF EARTHLIKE PLANETS AFTER GIANT IMPACT EVENTS , 2014, 1401.1499.

[38]  K. Stassun,et al.  NEAR-INFRARED EMISSION SPECTRUM OF WASP-103B USING HUBBLE SPACE TELESCOPE/WIDE FIELD CAMERA 3 , 2016, 1611.09272.

[39]  Avi Shporer,et al.  Evidence for Atmospheric Cold-trap Processes in the Noninverted Emission Spectrum of Kepler-13Ab Using HST/WFC3 , 2016, 1612.06409.

[40]  Tristan Guillot,et al.  Atmospheric circulation and tides of ``51 Pegasus b-like'' planets , 2002 .

[41]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[42]  J. Bean,et al.  DECIPHERING THE ATMOSPHERIC COMPOSITION OF WASP-12b: A COMPREHENSIVE ANALYSIS OF ITS DAYSIDE EMISSION , 2014, 1406.7567.

[43]  Nikole K. Lewis,et al.  The Complete Transmission Spectrum of WASP-39b with a Precise Water Constraint , 2017, 1711.10529.

[44]  David J Armstrong,et al.  Variability in the atmosphere of the hot giant planet HAT-P-7 b , 2016, Nature Astronomy.

[45]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[46]  Jacob L. Bean,et al.  SPITZER PHASE CURVE CONSTRAINTS FOR WASP-43b AT 3.6 AND 4.5 μm , 2016, 1608.00056.

[47]  Laura Kreidberg,et al.  batman: BAsic Transit Model cAlculatioN in Python , 2015, 1507.08285.

[48]  Drake Deming,et al.  STUDYING THE ATMOSPHERE OF THE EXOPLANET HAT-P-7b VIA SECONDARY ECLIPSE MEASUREMENTS WITH EPOXI, SPITZER, AND KEPLER , 2009, 0912.2132.

[49]  I. Hubeny,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003 .

[50]  Jacob L. Bean,et al.  THE ATMOSPHERIC CIRCULATION OF THE HOT JUPITER WASP-43b: COMPARING THREE-DIMENSIONAL MODELS TO SPECTROPHOTOMETRIC DATA , 2014, 1410.2382.

[51]  K. Horne,et al.  AN OPTIMAL EXTRACTION ALGORITHM FOR CCD SPECTROSCOPY. , 1986 .

[52]  C. McKay,et al.  Rapid calculation of radiative heating rates and photodissociation rates in inhomogeneous multiple scattering atmospheres , 1989 .

[53]  G. Orton,et al.  Methane and its isotopologues on Saturn from Cassini/CIRS observations , 2009 .

[54]  Jacob L. Bean,et al.  A DETECTION OF WATER IN THE TRANSMISSION SPECTRUM OF THE HOT JUPITER WASP-12b AND IMPLICATIONS FOR ITS ATMOSPHERIC COMPOSITION , 2015, 1504.05586.

[55]  Nikole K. Lewis,et al.  An ultrahot gas-giant exoplanet with a stratosphere , 2017, Nature.

[56]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[57]  Willy Benz,et al.  Planet formation with envelope enrichment: new insights on planetary diversity , 2016, 1609.00960.

[58]  HAT-P-26b: A LOW-DENSITY NEPTUNE-MASS PLANET TRANSITING A K STAR* , 2010, 1010.1008.

[59]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[60]  D. Homeier,et al.  The UK Met Office global circulation model with a sophisticated radiation scheme applied to the hot Jupiter HD 209458b , 2016, 1608.08593.

[61]  R. G. West,et al.  WASP-103 b: a new planet at the edge of tidal disruption , 2014, 1401.2784.

[62]  Nikku Madhusudhan,et al.  Atmospheric signatures of giant exoplanet formation by pebble accretion , 2016, 1611.03083.

[63]  B. Benneke,et al.  Strict Upper Limits on the Carbon-to-Oxygen Ratios of Eight Hot Jupiters from Self-Consistent Atmospheric Retrieval , 2015, 1504.07655.

[64]  Kristen Menou,et al.  MAGNETIC DRAG ON HOT JUPITER ATMOSPHERIC WINDS , 2010, 1003.3838.

[65]  J. Bean,et al.  A HUBBLE SPACE TELESCOPE SEARCH FOR A SUB-EARTH-SIZED EXOPLANET IN THE GJ 436 SYSTEM , 2014, 1410.0002.

[66]  S. Seager,et al.  ON THE INFERENCE OF THERMAL INVERSIONS IN HOT JUPITER ATMOSPHERES , 2010, 1010.4585.

[67]  Takayuki Kotani,et al.  High-resolution Spectroscopic Detection of TiO and a Stratosphere in the Day-side of WASP-33b , 2017, 1710.05276.

[68]  Adam Burrows,et al.  ALBEDO AND REFLECTION SPECTRA OF EXTRASOLAR GIANT PLANETS , 1999 .

[69]  M. Holman,et al.  IMPROVED SPECTROSCOPIC PARAMETERS FOR TRANSITING PLANET HOSTS , 2012, 1208.1268.

[70]  M. Griffin,et al.  The science of ARIEL (Atmospheric Remote-sensing Infrared Exoplanet Large-survey) , 2015, Astronomical Telescopes + Instrumentation.

[71]  Drake Deming,et al.  Water vapour absorption in the clear atmosphere of a Neptune-sized exoplanet , 2014, Nature.

[72]  Nicolas B. Cowan,et al.  Balancing the energy budget of short-period giant planets: evidence for reflective clouds and optical absorbers , 2015, 1502.06970.

[73]  B. Scott Gaudi,et al.  Achieving Better Than 1 Minute Accuracy in the Heliocentric and Barycentric Julian Dates , 2010, 1005.4415.

[74]  Heather Knutson,et al.  A SYSTEMATIC RETRIEVAL ANALYSIS OF SECONDARY ECLIPSE SPECTRA. II. A UNIFORM ANALYSIS OF NINE PLANETS AND THEIR C TO O RATIOS , 2013, 1309.6663.

[75]  Nikole K. Lewis,et al.  3.6 AND 4.5 μm SPITZER PHASE CURVES OF THE HIGHLY IRRADIATED HOT JUPITERS WASP-19b AND HAT-P-7b , 2015, 1512.09342.