Software Tools for Systems Biology

Publisher Summary This chapter surveys some of the software tools and emerging standards for representing, simulating, and analyzing cellular networks. Model databases, model exchange standards, ontologies, and computational approaches that are relevant to the study of dynamics in biochemical networks have also been discussed. There has been a significant increase in the availability of computer software to help in modeling, simulating, and analyzing dynamic models of cellular processes. Many tools have been developed by practicing scientists and are therefore available free, whereas others are commercial. The software discussed in this chapter is concerned with analyzing two particular types of problem. One is the classical problem of solving systems of differential equations that describe the deterministic evolution of molecular species concentrations in time. The second problem of interest is the realization of the master equation. This equation describes the time evolution of the concentration probabilities. However, because we need one time evolution equation for every particle state in the system, the system of equations becomes unwieldy very rapidly as the size of the system increases. There are still some areas that are lacking, most notably bifurcation analysis and model composition. There are some very notable tools for bifurcation analysis, but they have been written more for general use than specifically for systems biology. One of the issues that have plagued software development in systems biology is chronic reinvention. Many tools, particularly those listed at SBML.org, carry out similar functions at their core. The fact that each tool reimplements the same functionality is arguably a waste of resources, and it would be of great benefit to the community if some of the core functionality could be released in the form of reusable software libraries.

[1]  M. Poolman ScrumPy: metabolic modelling with Python. , 2006, Systems biology.

[2]  T. Henzinger,et al.  Executable cell biology , 2007, Nature Biotechnology.

[3]  Bruce E. Shapiro,et al.  MathSBML: a package for manipulating SBML-based biological models , 2004, Bioinform..

[4]  Hugh D. Spence,et al.  Minimum information requested in the annotation of biochemical models (MIRIAM) , 2005, Nature Biotechnology.

[5]  David A. Fell,et al.  SCAMP: A metabolic simulator and control analysis program , 1991 .

[6]  D J Park,et al.  METASIM, a general purpose metabolic stimulator for studying cellular transformations. , 1973, Computer programs in biomedicine.

[7]  Steffen Klamt,et al.  Structural and functional analysis of cellular networks with CellNetAnalyzer , 2007, BMC Systems Biology.

[8]  Herbert M. Sauro,et al.  Bioinformatics Applications Note Comparing Simulation Results of Sbml Capable Simulators , 2022 .

[9]  Peter J. Hunter,et al.  The CellML Model Repository , 2008, Bioinform..

[10]  Jens Timmer,et al.  Dynamical modeling and multi-experiment fitting with PottersWheel , 2008, Bioinform..

[11]  Michael L. Hines,et al.  NEURON — A Program for Simulation of Nerve Equations , 1993 .

[12]  Milan Kubíček,et al.  Book-Review - Computational Methods in Bifurcation Theory and Dissipative Structures , 1983 .

[13]  Kenneth J. Kauffman,et al.  Advances in flux balance analysis. , 2003, Current opinion in biotechnology.

[14]  Masaru Tomita,et al.  E-CELL: software environment for whole-cell simulation , 1999, Bioinform..

[15]  B. Kholodenko Cell-signalling dynamics in time and space , 2006, Nature Reviews Molecular Cell Biology.

[16]  J. H. Hofmeyr,et al.  METAMOD: software for steady-state modelling and control analysis of metabolic pathways on the BBC microcomputer , 1986, Comput. Appl. Biosci..

[17]  Matthew Suderman,et al.  Tools for visually exploring biological networks , 2007, Bioinform..

[18]  C Reder,et al.  Metabolic control theory: a structural approach. , 1988, Journal of theoretical biology.

[19]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[20]  Ed Anderson,et al.  LAPACK Users' Guide , 1995 .

[21]  Michael Hucka,et al.  SBMLToolbox: an SBML toolbox for MATLAB users , 2006, Bioinform..

[22]  Jörg Schwender,et al.  Metabolic flux analysis as a tool in metabolic engineering of plants. , 2008, Current opinion in biotechnology.

[23]  Zhike Zi,et al.  SBML-PET: a Systems Biology Markup Language-based parameter estimation tool , 2006, Bioinform..

[24]  Sven Sahle,et al.  A model diagram layout extension for SBML , 2006, Bioinform..

[25]  Frank T. Bergmann,et al.  Computational Tools for Modeling Protein Networks , 2006 .

[26]  William S. Hlavacek,et al.  BioNetGen: software for rule-based modeling of signal transduction based on the interactions of molecular domains , 2004, Bioinform..

[27]  Chris D Cox,et al.  Analysis of noise in quorum sensing. , 2003, Omics : a journal of integrative biology.

[28]  T. Bartol,et al.  Monte Carlo Methods for Simulating Realistic Synaptic Microphysiology Using MCell , 2000 .

[29]  H M Sauro,et al.  SCAMP: a general-purpose simulator and metabolic control analysis program , 1993, Comput. Appl. Biosci..

[30]  Denis Noble,et al.  Cellular Open Resource (COR): a Public CellML Based Environment for Modeling Biological Function , 2003, Int. J. Bifurc. Chaos.

[31]  W. Wiechert 13C metabolic flux analysis. , 2001, Metabolic engineering.

[32]  S. Tapscott,et al.  A basis for a visual language for describing, archiving and analyzing functional models of complex biological systems , 2001, Genome Biology.

[33]  L M Loew,et al.  A general computational framework for modeling cellular structure and function. , 1997, Biophysical journal.

[34]  P. Shannon,et al.  Cytoscape: a software environment for integrated models of biomolecular interaction networks. , 2003, Genome research.

[35]  Michael Hucka,et al.  LibSBML: an API Library for SBML , 2008, Bioinform..

[36]  Joseph M. Lancaster,et al.  Hardware acceleration of pseudo-random number generation for simulation applications , 2003, Proceedings of the 35th Southeastern Symposium on System Theory, 2003..

[37]  Darren J. Wilkinson Stochastic Modelling for Systems Biology , 2006 .

[38]  Sewall Wright,et al.  Physiological and Evolutionary Theories of Dominance , 1934, The American Naturalist.

[39]  Herbert M. Sauro,et al.  Supporting the SBML layout extension , 2006, Bioinform..

[40]  Roland Eils,et al.  Computational Systems Biology Platforms (Computergestützte Systembiologieplattformen) , 2006, it Inf. Technol..

[41]  D. Gillespie A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions , 1976 .

[42]  Hiroaki Kitano,et al.  Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. , 2003, Omics : a journal of integrative biology.

[43]  Andreas Kremling,et al.  Modular Modeling of Cellular Systems with ProMoT/Diva , 2003, Bioinform..

[44]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[45]  A Finney,et al.  Systems biology markup language: Level 2 and beyond. , 2003, Biochemical Society transactions.

[46]  Herbert M. Sauro,et al.  Conservation analysis of large biochemical networks , 2006, Bioinform..

[47]  Pierre Baldi,et al.  Sigmoid: a software infrastructure for pathway bioinformatics and systems biology , 2005, IEEE Intelligent Systems.

[48]  Robert Stevens,et al.  e-Science and biological pathway semantics , 2007, BMC Bioinformatics.

[49]  H. Kitano,et al.  Computational systems biology , 2002, Nature.

[50]  Gregory D. Peterson,et al.  Stochastic simulation of biological cellular processes using VHDL-AMS , 2002, Proceedings of the 2002 IEEE International Workshop on Behavioral Modeling and Simulation, 2002. BMAS 2002..

[51]  Christopher R. Myers,et al.  Python Unleashed on Systems Biology , 2007, Computing in Science & Engineering.

[52]  W M Atkins,et al.  Enhanced detoxication due to distributive catalysis and toxic thresholds: a kinetic analysis. , 1997, Biochemistry.

[53]  Andreas Zell,et al.  SBMLsqueezer: A CellDesigner plug-in to generate kinetic rate equations for biochemical networks , 2008, BMC Systems Biology.

[54]  Pierpaolo Degano,et al.  Causal pi-Calculus for Biochemical Modelling , 2003, CMSB.

[55]  Mudita Singhal,et al.  COPASI - a COmplex PAthway SImulator , 2006, Bioinform..

[56]  L. Loew,et al.  Quantitative cell biology with the Virtual Cell. , 2003, Trends in cell biology.

[57]  J. Tyson,et al.  The dynamics of cell cycle regulation. , 2002, BioEssays : news and reviews in molecular, cellular and developmental biology.

[58]  Darren J. Wilkinson,et al.  The SBML discrete stochastic models test suite , 2008, Bioinform..

[59]  Carmen G. Moles,et al.  Parameter estimation in biochemical pathways: a comparison of global optimization methods. , 2003, Genome research.

[60]  Rui Alves,et al.  Tools for kinetic modeling of biochemical networks , 2006, Nature Biotechnology.

[61]  Hideharu Amano,et al.  Stochastic Simulation for Biochemical Reactions on FPGA , 2004, FPL.

[62]  David McMillen,et al.  Biochemical Network Stochastic Simulator (BioNetS): software for stochastic modeling of biochemical networks , 2004, BMC Bioinformatics.

[63]  Kenneth Levenberg A METHOD FOR THE SOLUTION OF CERTAIN NON – LINEAR PROBLEMS IN LEAST SQUARES , 1944 .

[64]  Mats Jirstrand,et al.  Systems biology Systems Biology Toolbox for MATLAB : a computational platform for research in systems biology , 2006 .

[65]  Ravi Iyengar,et al.  Modeling Signaling Networks , 2002, Science.

[66]  Gordon D. Plotkin,et al.  A Language for Biochemical Systems , 2008, CMSB.

[67]  Gordon Broderick,et al.  A life-like virtual cell membrane using discrete automata , 2004, Silico Biol..

[68]  Kentaro Inoue,et al.  Extended CADLIVE: a novel graphical notation for design of biochemical network maps and computational pathway analysis , 2007, Nucleic acids research.

[69]  B Wolf,et al.  Structured Biological Modelling: a method for the analysis and simulation of biological systems applied to oscillatory intracellular calcium waves. , 1992, Bio Systems.

[70]  Pedro Mendes,et al.  GEPASI: a software package for modelling the dynamics, steady states and control of biochemical and other systems , 1993, Comput. Appl. Biosci..

[71]  Igor Goryanin,et al.  The Pathway Editor: A tool for managing complex biological networks , 2006, IBM J. Res. Dev..

[72]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[73]  Erwin P. Gianchandani,et al.  Flux balance analysis in the era of metabolomics , 2006, Briefings Bioinform..

[74]  Hong Li,et al.  Algorithms and Software for Stochastic Simulation of Biochemical Reacting Systems , 2008, Biotechnology progress.

[75]  U Rost,et al.  Visualisation of biochemical network simulations with SimWiz. , 2004, Systems biology.

[76]  Hamid Bolouri,et al.  Dizzy: Stochastic Simulation of Large-scale Genetic Regulatory Networks , 2005, J. Bioinform. Comput. Biol..

[77]  Herbert M. Sauro,et al.  Stochastic simulation GUI for biochemical networks , 2007, Bioinform..

[78]  M.-L. Linne,et al.  Discrete stochastic simulation of cell signaling: comparison of computational tools , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[79]  D. Fell,et al.  Fat synthesis in adipose tissue. An examination of stoichiometric constraints. , 1986, The Biochemical journal.

[80]  Xin Yao,et al.  Search biases in constrained evolutionary optimization , 2005, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews).

[81]  J. Field Energy metabolism of the cell. , 1947, Stanford medical bulletin.

[82]  Yukiko Matsuoka,et al.  Using process diagrams for the graphical representation of biological networks , 2005, Nature Biotechnology.

[83]  Maryann E Martone,et al.  Evidence for Ectopic Neurotransmission at a Neuronal Synapse , 2005, Science.

[84]  Kathy Chen,et al.  Network dynamics and cell physiology , 2001, Nature Reviews Molecular Cell Biology.

[85]  Stefanie Widder,et al.  The SBML ODE Solver Library: a native API for symbolic and fast numerical analysis of reaction networks , 2006, Bioinform..

[86]  William J. R. Longabaugh,et al.  Computational representation of developmental genetic regulatory networks. , 2005, Developmental biology.

[87]  Luis Serrano,et al.  Space as the final frontier in stochastic simulations of biological systems , 2005, FEBS letters.

[88]  D Garfinkel,et al.  A machine-independent language for the simulation of complex chemical and biochemical systems. , 1968, Computers and biomedical research, an international journal.

[89]  Daniel T Gillespie,et al.  Stochastic simulation of chemical kinetics. , 2007, Annual review of physical chemistry.

[90]  R. Milo,et al.  Oscillations and variability in the p53 system , 2006, Molecular systems biology.

[91]  Jan-Hendrik S. Hofmeyr,et al.  Modelling cellular systems with PySCeS , 2005, Bioinform..

[92]  P. Kloeden,et al.  From Elementary Probability to Stochastic Differential Equations with MAPLE , 2001 .

[93]  B. Palsson Systems Biology: Properties of Reconstructed Networks , 2006 .

[94]  Nicolas Le Novère,et al.  Model storage, exchange and integration , 2006, BMC Neuroscience.

[95]  Carol S. Woodward,et al.  Enabling New Flexibility in the SUNDIALS Suite of Nonlinear and Differential/Algebraic Equation Solvers , 2020, ACM Trans. Math. Softw..

[96]  O Wolkenhauer,et al.  Family tree of Markov models in systems biology. , 2006, IET systems biology.

[97]  Jacky L. Snoep,et al.  Web-based kinetic modelling using JWS Online , 2004, Bioinform..

[98]  John Parkinson,et al.  Cell++ - simulating biochemical pathways , 2006, Bioinform..

[99]  Johan Hattne,et al.  Stochastic reaction-diffusion simulation with MesoRD , 2005, Bioinform..

[100]  M Ander,et al.  SmartCell, a framework to simulate cellular processes that combines stochastic approximation with diffusion and localisation: analysis of simple networks. , 2004, Systems biology.

[101]  D A Fell,et al.  Simulation of dioxygen free radical reactions. , 1993, Biochemical Society transactions.

[102]  J A. Burns Steady states of general multi‐enzyme networks and their associated properties. Computational approaches , 1969, FEBS letters.

[103]  Milan Kubicek,et al.  Algorithm 502: Dependence of Solution of Nonlinear Systems on a Parameter [C5] , 1976, TOMS.

[104]  Catherine M Lloyd,et al.  CellML: its future, present and past. , 2004, Progress in biophysics and molecular biology.

[105]  Upinder S Bhalla,et al.  Use of Kinetikit and GENESIS for modeling signaling pathways. , 2002, Methods in enzymology.

[106]  Clifford A. Shaffer,et al.  The JigCell Model Builder and Run Manager , 2004, Bioinform..

[107]  Sean Sedwards,et al.  Cyto-Sim: a formal language model and stochastic simulator of membrane-enclosed biochemical processes , 2007, Bioinform..

[108]  Hiroaki Kitano,et al.  The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models , 2003, Bioinform..

[109]  Vassilios Sotiropoulos,et al.  Multiscale Hy3S: Hybrid stochastic simulation for supercomputers , 2006, BMC Bioinformatics.

[110]  Nicolas Le Novère,et al.  STOCHSIM: modelling of stochastic biomolecular processes , 2001, Bioinform..

[111]  Jason A. Papin,et al.  Genome-scale microbial in silico models: the constraints-based approach. , 2003, Trends in biotechnology.

[112]  James C. Schaff,et al.  The Virtual Cell , 2002, Annals of the New York Academy of Sciences.

[113]  B. Chance,et al.  The kinetics of the enzyme-substrate compound of peroxidase. 1943. , 1943, Advances in enzymology and related areas of molecular biology.

[114]  Daniela Degenring,et al.  Discrete event, multi-level simulation of metabolite channeling. , 2004, Bio Systems.

[115]  Michael L. Hines,et al.  The NEURON Book , 2006 .

[116]  Nicolas Le Novère,et al.  CellML2SBML: conversion of CellML into SBML , 2006, Bioinform..

[117]  Hao Zhu,et al.  Cellware-a multi-algorithmic software for computational systems biology , 2004, Bioinform..

[118]  A. Arkin,et al.  Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. , 1998, Genetics.

[119]  D Garfinkel,et al.  Computer applications to biochemical kinetics. , 1970, Annual review of biochemistry.

[120]  H. Sauro,et al.  Conservation analysis in biochemical networks: computational issues for software writers. , 2004, Biophysical chemistry.

[121]  C. Rao,et al.  Control, exploitation and tolerance of intracellular noise , 2002, Nature.

[122]  Ali Nadim,et al.  A Model for p53 Dynamics Triggered by DNA Damage , 2007, SIAM J. Appl. Dyn. Syst..