Conditional q-entropies and quantum separability: a numerical exploration

We revisit the relationship between quantum separability and the sign of the relative q-entropies of composite quantum systems. The q-entropies depend on the density matrix eigenvalues pi through the quantity ωq = ∑ipqi. Renyi's and Tsallis' measures constitute particular instances of these entropies. We perform a systematic numerical survey of the space of mixed states of two-qubit systems in order to determine, as a function of the degree of mixture, and for different values of the entropic parameter q, the volume in state space occupied by those states characterized by positive values of the relative entropy. Similar calculations are performed for qubit–qutrit systems and for composite systems described by Hilbert spaces of larger dimensionality. We pay particular attention to the limit case q → ∞. Our numerical results indicate that, as the dimensionalities of both subsystems increase, typical mixed states of composite quantum systems tend, as far as their relative q-entropies are concerned, to behave in a classical way.

[1]  K. Życzkowski On the volume of the set of mixed entangled states II , 1999, quant-ph/9902050.

[2]  A nonextensive critical phenomenon scenario for quantum entanglement , 2000, cond-mat/0012502.

[3]  Horodecki Information-theoretic aspects of inseparability of mixed states. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[4]  M. Nielsen,et al.  Separable states are more disordered globally than locally. , 2000, Physical review letters.

[5]  R. Jozsa,et al.  Quantum Computation and Shor's Factoring Algorithm , 1996 .

[6]  N. Mermin Quantum theory: Concepts and methods , 1997 .

[7]  H. Sommers,et al.  Induced measures in the space of mixed quantum states , 2000, quant-ph/0012101.

[8]  A. Galindo,et al.  Information and computation: Classical and quantum aspects , 2001, quant-ph/0112105.

[9]  C. Tsallis,et al.  Peres criterion for separability through nonextensive entropy , 2001 .

[10]  T. Hiroshima,et al.  Maximally entangled mixed states under nonlocal unitary operations in two qubits , 2000 .

[11]  C. Adami,et al.  Negative entropy and information in quantum mechanics , 1995, quant-ph/9512022.

[12]  P. Landsberg,et al.  Distributions and channel capacities in generalized statistical mechanics , 1998 .

[13]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[14]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[15]  A. Vidiella-Barranco,et al.  Entanglement and nonextensive statistics , 1999, quant-ph/9909057.

[16]  Gregory Berkolaiko,et al.  Star graphs and Seba billiards , 2001 .

[17]  M. Plenio,et al.  Teleportation, entanglement and thermodynamics in the quantum world , 1998 .

[18]  F. Pennini,et al.  Tsallis’ entropy maximization procedure revisited , 2000 .

[19]  M. Horodecki,et al.  Quantum α-entropy inequalities: independent condition for local realism? , 1996 .

[20]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[21]  W. Wootters Entanglement of Formation of an Arbitrary State of Two Qubits , 1997, quant-ph/9709029.

[22]  W. Munro,et al.  Maximizing the entanglement of two mixed qubits , 2001, quant-ph/0103113.

[23]  M. Lewenstein,et al.  Volume of the set of separable states , 1998, quant-ph/9804024.

[24]  Werner,et al.  Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. , 1989, Physical review. A, General physics.

[25]  K. Życzkowski,et al.  Composed ensembles of random unitary matrices , 1997, chao-dyn/9707006.

[26]  A. Plastino,et al.  Nonextensive thermostatistics and the H theorem. , 2001, Physical review letters.

[27]  Ekert,et al.  Quantum cryptography based on Bell's theorem. , 1991, Physical review letters.

[28]  M. Wolf,et al.  Conditional entropies and their relation to entanglement criteria , 2002, quant-ph/0202058.

[29]  Christoph Simon,et al.  Multiphoton entanglement concentration and quantum cryptography. , 2002, Physical review letters.

[30]  Martin Gennis,et al.  Explorations in Quantum Computing , 2001, Künstliche Intell..

[31]  Vedral,et al.  Local distinguishability of multipartite orthogonal quantum states , 2000, Physical review letters.

[32]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[33]  J. M. G. Sancho,et al.  Measuring the entanglement of bipartite pure states , 2000 .

[34]  C. Beck,et al.  Thermodynamics of chaotic systems , 1993 .

[35]  M. Nielsen,et al.  Interdisciplinary Physics: Biological Physics, Quantum Information, etc. , 2001 .

[36]  Physics Letters , 1962, Nature.

[37]  A. R. Plastino,et al.  Entanglement, mixedness, and q-entropies , 2002 .

[38]  P. Zanardi,et al.  Entangling power of quantum evolutions , 2000, quant-ph/0005031.

[39]  C. Tsallis Possible generalization of Boltzmann-Gibbs statistics , 1988 .

[40]  On the entanglement properties of two-rebits systems , 2002, quant-ph/0203011.