Models for Minimax Stochastic Linear Optimization Problems with Risk Aversion
暂无分享,去创建一个
Xuan Vinh Doan | Dimitris Bertsimas | Chung-Piaw Teo | Karthik Natarajan | X. V. Doan | D. Bertsimas | K. Natarajan | C. Teo
[1] Alexander Shapiro,et al. On the Rate of Convergence of Optimal Solutions of Monte Carlo Approximations of Stochastic Programs , 2000, SIAM J. Optim..
[2] Alexander Shapiro,et al. Minimax analysis of stochastic problems , 2002, Optim. Methods Softw..
[3] R. Wets,et al. Stochastic programming , 1989 .
[4] Kathrin Klamroth,et al. Biconvex sets and optimization with biconvex functions: a survey and extensions , 2007, Math. Methods Oper. Res..
[5] Shabbir Ahmed,et al. Convexity and decomposition of mean-risk stochastic programs , 2006, Math. Program..
[6] Melvyn Sim,et al. TRACTABLE ROBUST EXPECTED UTILITY AND RISK MODELS FOR PORTFOLIO OPTIMIZATION , 2009 .
[7] Werner Römisch,et al. Polyhedral Risk Measures in Stochastic Programming , 2005, SIAM J. Optim..
[8] Johan Löfberg,et al. YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .
[9] David P. Rutenberg,et al. Technical Note - Risk Aversion in Stochastic Programming with Recourse , 1973, Oper. Res..
[10] J. Dupacová. The minimax approach to stochastic programming and an illustrative application , 1987 .
[11] A. Mehrez,et al. Note—The Single Facility Minimax Distance Problem Under Stochastic Location of Demand , 1980 .
[12] Johan Efberg,et al. YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .
[13] J. Jensen. Sur les fonctions convexes et les inégalités entre les valeurs moyennes , 1906 .
[14] M. Teboulle,et al. Expected Utility, Penalty Functions, and Duality in Stochastic Nonlinear Programming , 1986 .
[15] C. Floudas,et al. A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—I. Theory , 1990 .
[16] Alexander Shapiro,et al. On a Class of Minimax Stochastic Programs , 2004, SIAM J. Optim..
[17] D. Rutenberg. RISK AVERSION IN STOCHASTIC PROGRAMMING WITH RECOURSE. , 1968 .
[18] David P. Morton,et al. Second-Order Lower Bounds on the Expectation of a Convex Function , 2005, Math. Oper. Res..
[19] C. HuangC.,et al. Bounds on the Expectation of a Convex Function of a Random Variable , 1977 .
[20] K. Isii. On sharpness of tchebycheff-type inequalities , 1962 .
[21] Alexander Shapiro,et al. The Sample Average Approximation Method for Stochastic Discrete Optimization , 2002, SIAM J. Optim..
[22] A. Madansky. Bounds on the Expectation of a Convex Function of a Multivariate Random Variable , 1959 .
[23] Jos F. Sturm,et al. A Matlab toolbox for optimization over symmetric cones , 1999 .
[24] Michèle Breton,et al. Algorithms for the solution of stochastic dynamic minimax problems , 1995, Comput. Optim. Appl..
[25] M. Teboulle,et al. AN OLD‐NEW CONCEPT OF CONVEX RISK MEASURES: THE OPTIMIZED CERTAINTY EQUIVALENT , 2007 .
[26] L. Lovász,et al. Geometric Algorithms and Combinatorial Optimization , 1981 .
[27] M. Sion. On general minimax theorems , 1958 .
[28] Richard E. Wendell,et al. Minimization of a Non-Separable Objective Function Subject to Disjoint Constraints , 1976, Oper. Res..
[29] Jitka Dupačová,et al. Stress Testing via Contamination , 2004, Coping with Uncertainty.
[30] Yinyu Ye,et al. Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems , 2010, Oper. Res..
[31] Morten Riis,et al. Applying the minimax criterion in stochastic recourse programs , 2005, Eur. J. Oper. Res..
[32] O. Mangasarian,et al. A variable-complexity norm maximization problem , 1986 .