An All‐Solid‐State Flexible Micro‐supercapacitor on a Chip

Figure 1 . (a) A schematic image of fabrication process of PANI nanowire arrays based on MSC fl exible fi lm; (b) the optical picture of fl exible MSC unit arrays on PET fi lm; (c) optical microscopy of MSC 400; SEM image of PANI nanowire arrays obtained from (d) tilted 20 ° view and (e) top view. The current development trend of miniaturized autonomous electronic equipment such as implantable medical devices and active radio frequency identifi cation (RFID) tags has raised the demand for rechargeable microscale power sources of appropriate size. [ 1 , 2 ] Microscale energy storage units are especially important for integrating energy conversion devices (e.g., piezoelectric nanogenerator, [ 3 ] solar cell, [ 4 ] or thermalelectric cells [ 5 ] ) and other electronic circuits to build a self-powered micro/nano-device system. Furthermore, microscale and on-chip energy-storage devices can achieve high ratio of energy delivery at high charge-discharge rates due to a shortened diffusion length. [ 6 , 7 ]

[1]  Subodh G. Mhaisalkar,et al.  Printable photo-supercapacitor using single-walled carbon nanotubes , 2011 .

[2]  Pierre-Louis Taberna,et al.  Continuous carbide-derived carbon films with high volumetric capacitance , 2011 .

[3]  John R. Miller,et al.  Graphene Double-Layer Capacitor with ac Line-Filtering Performance , 2010, Science.

[4]  Luzhuo Chen,et al.  Highly flexible and all-solid-state paperlike polymer supercapacitors. , 2010, Nano letters.

[5]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[6]  Jingjing Xu,et al.  Hierarchical nanocomposites of polyaniline nanowire arrays on graphene oxide sheets with synergistic effect for energy storage. , 2010, ACS nano.

[7]  P. Taberna,et al.  Monolithic Carbide-Derived Carbon Films for Micro-Supercapacitors , 2010, Science.

[8]  Zhixiang Wei,et al.  Conducting Polyaniline Nanowire Arrays for High Performance Supercapacitors , 2010 .

[9]  Zhixiang Wei,et al.  Conducting polymer nanowire arrays with enhanced electrochemical performance , 2010 .

[10]  Cunjiang Yu,et al.  Stretchable Supercapacitors Based on Buckled Single‐Walled Carbon‐Nanotube Macrofilms , 2009, Advanced materials.

[11]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[12]  Y. Gogotsi,et al.  Materials for electrochemical capacitors. , 2008, Nature materials.

[13]  R. Ruoff,et al.  Graphene-based ultracapacitors. , 2008, Nano letters.

[14]  S. Cho,et al.  Fast electrochemistry of conductive polymer nanotubes: synthesis, mechanism, and application. , 2008, Accounts of chemical research.

[15]  M. Armand,et al.  Building better batteries , 2008, Nature.

[16]  Markus Antonietti,et al.  High Electroactivity of Polyaniline in Supercapacitors by Using a Hierarchically Porous Carbon Monolith as a Support , 2007 .

[17]  P. Ajayan,et al.  Flexible energy storage devices based on nanocomposite paper , 2007, Proceedings of the National Academy of Sciences.

[18]  L. J. Lee,et al.  Growth and alignment of polyaniline nanofibres with superhydrophobic, superhydrophilic and other properties. , 2007, Nature nanotechnology.

[19]  E. Frąckowiak Carbon materials for supercapacitor application. , 2007, Physical chemistry chemical physics : PCCP.

[20]  H.Q. Li,et al.  Ordered Whiskerlike Polyaniline Grown on the Surface of Mesoporous Carbon and Its Electrochemical Capacitance Performance , 2006 .

[21]  François Béguin,et al.  A High‐Performance Carbon for Supercapacitors Obtained by Carbonization of a Seaweed Biopolymer , 2006 .

[22]  A. Hollenkamp,et al.  Carbon properties and their role in supercapacitors , 2006 .

[23]  Zhong Lin Wang,et al.  Piezoelectric Nanogenerators Based on Zinc Oxide Nanowire Arrays , 2006, Science.

[24]  A. Ramanavičius,et al.  Conducting polymer-based nanostructurized materials: electrochemical aspects , 2005, Nanotechnology.

[25]  A. Majumdar,et al.  Thermal conductance and thermopower of an individual single-wall carbon nanotube. , 2005, Nano letters.

[26]  E. Barsoukov,et al.  Impedance spectroscopy : theory, experiment, and applications , 2005 .

[27]  Richard B Kaner,et al.  Nanofiber formation in the chemical polymerization of aniline: a mechanistic study. , 2004, Angewandte Chemie.

[28]  Chi-Chang Hu,et al.  Effects of the loading and polymerization temperature on the capacitive performance of polyaniline in NaNO3 , 2002 .

[29]  Soon Ho Chang,et al.  Symmetric redox supercapacitor with conducting polyaniline electrodes , 2002 .

[30]  F. Béguin,et al.  Carbon materials for the electrochemical storage of energy in capacitors , 2001 .

[31]  D. Bélanger,et al.  Electrochemical Characterization of Polyaniline in Nonaqueous Electrolyte and Its Evaluation as Electrode Material for Electrochemical Supercapacitors , 2001 .

[32]  S. Gottesfeld,et al.  Characterization and Long‐Term Performance of Polyaniline‐Based Electrochemical Capacitors , 2000 .

[33]  O. Inganäs,et al.  Conducting Polymer Hydrogels as 3D Electrodes: Applications for Supercapacitors , 1999 .

[34]  S. D. Jones,et al.  A microfabricated solid-state secondary Li battery , 1996 .