Range Restricted Interpolation Using Cubic Bezier Triangles

A range restricted C 1 interpolation local scheme to scattered data is derived. Each macro triangle of the triangulated domain is split into three mini triangles and the interpolating surface on each mini triangle is a cubic Bezier triangle. Sufficient conditions derived for the non-negativity of these cubic Bezier triangles are expressed as lower bounds to the Bezier ordinates. The non-negativity preserving interpolation scheme extends to the construction of a range restricted interpolating surface with lower or upper constraints which are polynomial surfaces of degree up to three. The scheme is illustrated with graphical examples.

[1]  Tim N. T. Goodman,et al.  Local derivative estimation for scattered data interpolation , 1995 .

[2]  U. Wever,et al.  Ono-negative exponential splines , 1988 .

[3]  Ken Brodlie,et al.  Visualization of surface data to preserve positivity and other simple constraints , 1995, Comput. Graph..

[4]  H. B. Said,et al.  A C1 triangular interpolant suitable for scattered data interpolation , 1991 .

[5]  Les A. Piegl,et al.  Algorithm for Delaunay triangulation and convex-hull computation using a sparse matrix , 1992, Comput. Aided Des..

[6]  Gerhard Opfer,et al.  The derivation of cubic splines with obstacles by methods of optimization and optimal control , 1987 .

[7]  B. H. Ong,et al.  On non-parametric constrained interpolation , 1992 .

[8]  Jochen W. Schmidt,et al.  Powell-Sabin splines in range restricted interpolation of scattered data , 1994, Computing.

[9]  Gerald Farin,et al.  Curves and surfaces for computer aided geometric design , 1990 .

[10]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[11]  Fujio Yamaguchi,et al.  Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.

[12]  Peter Lancaster,et al.  Curve and surface fitting - an introduction , 1986 .

[13]  G. Farin NURBS for Curve and Surface Design , 1991 .

[14]  Jochen W. Schmidt,et al.  Positivity of cubic polynomials on intervals and positive spline interpolation , 1988 .

[15]  J. W. Schmidt,et al.  Nonnegative interpolation by biquadratic splines on refined rectangular grids , 1994 .

[16]  B. H. Ong,et al.  Range restricted scattered data interpolation using convex combination of cubic Bézier triangles , 2001 .