Range Restricted Interpolation Using Cubic Bezier Triangles
暂无分享,去创建一个
Voon Pang Kong | B. H. Ong | K. H. Saw | B. Ong | V. Kong
[1] Tim N. T. Goodman,et al. Local derivative estimation for scattered data interpolation , 1995 .
[2] U. Wever,et al. Ono-negative exponential splines , 1988 .
[3] Ken Brodlie,et al. Visualization of surface data to preserve positivity and other simple constraints , 1995, Comput. Graph..
[4] H. B. Said,et al. A C1 triangular interpolant suitable for scattered data interpolation , 1991 .
[5] Les A. Piegl,et al. Algorithm for Delaunay triangulation and convex-hull computation using a sparse matrix , 1992, Comput. Aided Des..
[6] Gerhard Opfer,et al. The derivation of cubic splines with obstacles by methods of optimization and optimal control , 1987 .
[7] B. H. Ong,et al. On non-parametric constrained interpolation , 1992 .
[8] Jochen W. Schmidt,et al. Powell-Sabin splines in range restricted interpolation of scattered data , 1994, Computing.
[9] Gerald Farin,et al. Curves and surfaces for computer aided geometric design , 1990 .
[10] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[11] Fujio Yamaguchi,et al. Curves and Surfaces in Computer Aided Geometric Design , 1988, Springer Berlin Heidelberg.
[12] Peter Lancaster,et al. Curve and surface fitting - an introduction , 1986 .
[13] G. Farin. NURBS for Curve and Surface Design , 1991 .
[14] Jochen W. Schmidt,et al. Positivity of cubic polynomials on intervals and positive spline interpolation , 1988 .
[15] J. W. Schmidt,et al. Nonnegative interpolation by biquadratic splines on refined rectangular grids , 1994 .
[16] B. H. Ong,et al. Range restricted scattered data interpolation using convex combination of cubic Bézier triangles , 2001 .