A software tool for the spatiotemporal analysis and reporting of groundwater monitoring data

The GroundWater Spatiotemporal Data Analysis Tool (GWSDAT) is a user friendly, open source, decision support tool for the analysis and reporting of groundwater monitoring data. Uniquely, GWSDAT applies a spatiotemporal model smoother for a more coherent and smooth interpretation of the interaction in spatial and time-series components of groundwater solute concentrations. Data entry is via a standardised Microsoft Excel input template whilst the underlying statistical modelling and graphical output are generated using the open source statistical program R. This paper describes in detail the various plotting options available and how the graphical user interface can be used for rapid, rigorous and interactive trend analysis with facilitated report generation. GWSDAT has been used extensively in the assessment of soil and groundwater conditions at Shell's downstream assets and the discussion section describes the benefits of its applied use. Finally, some consideration is given to possible future developments.

[1]  E. Pebesma,et al.  Classes and Methods for Spatial Data , 2015 .

[2]  Noel A Cressie,et al.  Statistics for Spatio-Temporal Data , 2011 .

[3]  Paul H. C. Eilers,et al.  Flexible smoothing with B-splines and penalties , 1996 .

[4]  L Evers,et al.  Efficient and automatic methods for flexible regression on spatiotemporal data, with applications to groundwater monitoring , 2013, Environmetrics.

[5]  Gabor Grothendieck,et al.  Lattice: Multivariate Data Visualization with R , 2008 .

[6]  Julia J Aziz,et al.  MAROS: A Decision Support System for Optimizing Monitoring Plans , 2003, Ground water.

[7]  A. Bowman,et al.  Applied smoothing techniques for data analysis : the kernel approach with S-plus illustrations , 1999 .

[8]  Clifford M. Hurvich,et al.  Smoothing parameter selection in nonparametric regression using an improved Akaike information criterion , 1998 .

[9]  R. Hirsch,et al.  Techniques of trend analysis for monthly water quality data , 1982 .

[10]  Karl Ropkins,et al.  openair - An R package for air quality data analysis , 2012, Environ. Model. Softw..

[11]  Dennis R. Helsel,et al.  Nondetects and data analysis : statistics for censored environmental data , 2004 .

[12]  D. Helsel,et al.  Statistical methods in water resources , 2020, Techniques and Methods.

[13]  R. Bivand,et al.  Tools for Reading and Handling Spatial Objects , 2016 .

[14]  David G. Kinniburgh,et al.  Geostatistical analysis of arsenic concentration in groundwater in Bangladesh using disjunctive kriging , 2003 .

[15]  Joseph A. Ricker A Practical Method to Evaluate Ground Water Contaminant Plume Stability , 2008 .

[16]  Deepayan Sarkar,et al.  Lattice: Multivariate Data Visualization with R , 2008 .

[17]  Adrian Bowman,et al.  rpanel: Simple Interactive Controls for R Functions Using the tcltk Package , 2007 .

[18]  S. Wood Generalized Additive Models: An Introduction with R , 2006 .

[19]  R. Tibshirani,et al.  Generalized additive models for medical research , 1986, Statistical methods in medical research.

[20]  K. Cameron,et al.  Using spatial models and kriging techniques to optimize long‐term ground‐water monitoring networks: a case study , 2002 .

[21]  K. Cameron Better Optimization of Long-Term Monitoring Networks , 2004 .

[22]  Paul H. C. Eilers,et al.  Generalized Linear Models with P-splines , 1992 .

[23]  James P. Gibb,et al.  Practical Guide for Ground-water Sampling , 1985 .

[24]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .