Random number generators in genetic algorithms for unconstrained and constrained optimization

Abstract Presented here is a genetic algorithm that computes an approximate solution to constrained and unconstrained global optimization problems. This technique has been implemented using several pseudo- and quasi-random number generators and the results of several test examples are presented. The performance of this technique is based on a ranked comparison of relative error.

[1]  Eric R. Zieyel Operations research : applications and algorithms , 1988 .

[2]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[3]  Erick Cantú-Paz,et al.  On Random Numbers and the Performance of Genetic Algorithms , 2002, GECCO.

[4]  Panos M. Pardalos,et al.  Parallel Search for Combinatorial Optimization : Genetic Algorithms , Simulated Annealing , Tabu Search and GRASP ? , 1995 .

[5]  Graham R. Wood,et al.  The bisection method in higher dimensions , 1992, Math. Program..

[6]  K. Miettinen,et al.  Quasi-random initial population for genetic algorithms , 2004 .

[7]  Scott M. Thede An introduction to genetic algorithms , 2004 .

[8]  Syamal K. Sen,et al.  QUASI-VERSUS PSEUDO-RANDOM GENERATORS: DISCREPANCY, COMPLEXITY AND INTEGRATION-ERROR BASED COMPARISON , 2006 .

[9]  Peter Nordin,et al.  Genetic programming - An Introduction: On the Automatic Evolution of Computer Programs and Its Applications , 1998 .

[10]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[11]  James A. Foster,et al.  How random generator quality impacts genetic algorithm performance , 2002 .

[12]  Shuhei Kimura,et al.  Genetic algorithms using low-discrepancy sequences , 2005, GECCO '05.

[13]  Melanie Mitchell,et al.  An introduction to genetic algorithms , 1996 .

[14]  D. E. Goldberg,et al.  Genetic Algorithms in Search , 1989 .

[15]  Michael D. Vose,et al.  The simple genetic algorithm - foundations and theory , 1999, Complex adaptive systems.

[16]  Frederick S. Hillier,et al.  Introduction of Operations Research , 1967 .