Interactive visualization of high-dimensional petascale ocean data

We describe an application for interactive visualization of 5 petabytes of time-varying multivariate data from a high-resolution global ocean circulation model. The input data are 10311 hourly (ocean time) time steps of various 2D and 3D fields from a 22-billion point 1/48-degree “lat-lon cap” configuration of the MIT General Circulation Model (MITgcm). We map the global horizontal model domain onto our 128-screen (8×16) tiled display wall to produce a canonical tiling with approximately one MITgcm grid point per display pixel, and using this tiling we encode the entire time series for multiple native and computed scalar quantities at a collection of ocean depths. We reduce disk bandwidth requirements by converting the model's floating point data to 16-bit fixed point values, and compressing those values with a lossless video encoder, which together allow synchronized playback at 24 time steps per second across all 128 displays. The application allows dynamic assignment of any two encoded tiles to any display, and has multiple interfaces for quickly specifying various orderly arrangements of tiles. All subsequent rendering is done on the fly, with run time control of colormaps, transfer functions, histogram equalization, and labeling. The two data streams on each screen can be rendered independently and combined in various ways, including blending, differencing, horizontal/vertical wipes, and checkerboarding. The two data streams on any screen can optionally be displayed as a scatterplot in their joint attribute space. All scatterplots and map-view plots from the same x/y location and depth are linked so they all show the current brushable selection. Ocean scientists have used the system, and have found previously unidentified features in the data.

[1]  Doris Dransch,et al.  Visual Analytics for Comparison of Ocean Model Output with Reference Data: Detecting and Analyzing Geophysical Processes Using Clustering Ensembles , 2014, IEEE Transactions on Visualization and Computer Graphics.

[2]  James P. Ahrens,et al.  Subband coding for large-scale scientific simulation data using JPEG 2000 , 2012, 2012 IEEE Southwest Symposium on Image Analysis and Interpretation.

[3]  Richard A. Becker,et al.  Brushing scatterplots , 1987 .

[4]  Patrick Heimbach,et al.  OVERVIEW OF THE FORMULATION AND NUMERICS OF THE MIT GCM . vnorth uwest ueast vsouth wup , 2004 .

[5]  M. Monmonier Geographic Brushing: Enhancing Exploratory Analysis of the Scatterplot Matrix , 2010 .

[6]  Robert Sisneros,et al.  Adaptive Performance-Constrained In Situ Visualization of Atmospheric Simulations , 2016, 2016 IEEE International Conference on Cluster Computing (CLUSTER).

[7]  Thomas Butkiewicz,et al.  Multi-touch 3D exploratory analysis of ocean flow models , 2011, OCEANS'11 MTS/IEEE KONA.

[8]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[9]  David Ellsworth,et al.  Concurrent Visualization in a Production Supercomputing Environment , 2006, IEEE Transactions on Visualization and Computer Graphics.

[10]  J. Thepaut,et al.  The ERA‐Interim reanalysis: configuration and performance of the data assimilation system , 2011 .

[11]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[12]  Alistair Adcroft,et al.  Rescaled height coordinates for accurate representation of free-surface flows in ocean circulation models , 2004 .

[13]  Peter Filzmoser,et al.  Brushing Moments in Interactive Visual Analysis , 2010, Comput. Graph. Forum.

[14]  C. Wunsch,et al.  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation , 2015 .

[15]  Takayuki Itoh,et al.  Time-Varying Data Visualization Using Clustered Heatmap and Dual Scatterplots , 2016, 2016 20th International Conference Information Visualisation (IV).

[16]  Helwig Hauser,et al.  Visualization and Visual Analysis of Multifaceted Scientific Data: A Survey , 2013, IEEE Transactions on Visualization and Computer Graphics.

[17]  Bernice E. Rogowitz,et al.  WEAVE: a system for visually linking 3-D and statistical visualizations applied to cardiac simulation and measurement data , 2000, Proceedings Visualization 2000. VIS 2000 (Cat. No.00CH37145).

[18]  Hans Hagen,et al.  In Situ Eddy Analysis in a High-Resolution Ocean Climate Model , 2016, IEEE Transactions on Visualization and Computer Graphics.

[19]  Chris Henze Feature detection in linked derived spaces , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[20]  Yuzhong Shen,et al.  Interactive visualization of Regional Ocean Modeling System , 2007 .

[21]  James Ahrens,et al.  Video Compression for Ocean Simulation Image Databases , 2017, EnvirVis@EuroVis.

[22]  P. Rheingans,et al.  SimilarityExplorer : A Visual Inter-Comparison Tool for Multifaceted Climate Data , 2013 .

[23]  Pak Chung Wong,et al.  Multivariate Visualization with Data Fusion , 2002, Inf. Vis..

[24]  Falko Kuester,et al.  Visualization of high-resolution image collections on large tiled display walls , 2011, Future Gener. Comput. Syst..

[25]  Robert J. Moorhead,et al.  EnVis/Hum: high-resolution ocean model visualization and display , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).

[26]  Peter Lindstrom,et al.  Fixed-Rate Compressed Floating-Point Arrays , 2014, IEEE Transactions on Visualization and Computer Graphics.

[27]  Creon Levit,et al.  The hyperwall , 2003, Proceedings International Conference on Coordinated and Multiple Views in Exploratory Visualization - CMV 2003 -.

[28]  Kwan-Liu Ma,et al.  Flow-based scatterplots for sensitivity analysis , 2010, 2010 IEEE Symposium on Visual Analytics Science and Technology.

[29]  Xiaotong Liu,et al.  Visualization of Time-Varying Weather Ensembles across Multiple Resolutions , 2017, IEEE Transactions on Visualization and Computer Graphics.

[30]  Akio Arakawa,et al.  Computational Design of the Basic Dynamical Processes of the UCLA General Circulation Model , 1977 .

[31]  David S. Ebert,et al.  An Atmospheric Visual Analysis and Exploration System , 2006, IEEE Transactions on Visualization and Computer Graphics.

[32]  James P. Ahrens,et al.  Interactive Colormapping: Enabling Multiple Data Range and Detailed Views of Ocean Salinity , 2016, CHI Extended Abstracts.

[33]  E. V. Zudilova-Seinstra,et al.  Visualizing climate data on a tiled panel display: A user-centered approach , 2008 .