Deteksi dan Pengenalan Objek Dengan Model Machine Learning: Model Yolo

Object recognition and detection have been in request by numerous parties since Computer Vision innovation within the 1960s, both within the industrial and medical area. Since then, many studies have focused on object recognition and detection with various types of algorithm models that can recognize and detect objects in an image. However, not all of these algorithm models are efficient and effective in their application. Most of the previous algorithm models have a relatively high level of complexity. Here, the author tries to explain and introduce the YOLO (You only look once) algorithm model, which has a high enough image detection processing speed capability and accuracy that can compete with the previous algorithm models. There are several advantages and disadvantages of each version made, which are explained in the discussion section.

[1]  Yudi Prayudi,et al.  Steganalisis Blind dengan Metode Convolutional Neural Network (CNN) Yedroudj- Net terhadap Tools Steganografi , 2020 .

[2]  Tutut Furi Kusumaningrum IMPLEMENTASI CONVOLUTION NEURAL NETWORK (CNN) UNTUK KLASIFIKASI JAMUR KONSUMSI DI INDONESIA MENGGUNAKAN KERAS , 2018 .

[3]  Purwanto,et al.  Komparasi Algoritma Klasifikasi Machine Learning Dan Feature Selection pada Analisis Sentimen Review Film , 2015 .

[4]  Hong-Yuan Mark Liao,et al.  YOLOv4: Optimal Speed and Accuracy of Object Detection , 2020, ArXiv.

[5]  Teng Li,et al.  Facial Expression Recognition with Faster R-CNN , 2017 .

[6]  Jayyidan Falakhi Mawaza,et al.  Masalah Sosial dan Kebijakan Publik di Indonesia (Studi Kasus UU ITE No. 19 Tahun 2016) , 2020 .

[7]  Slameto Belajar dan faktor-faktor yang mempengaruhinya , 1988 .

[8]  Shin Ishii,et al.  Binary classifiers ensemble based on Bregman divergence for multi-class classification , 2018, Neurocomputing.

[10]  Yuni Eka Achyani Penerapan Metode Particle Swarm Optimization Pada Optimasi Prediksi Pemasaran Langsung , 2018 .

[11]  Untung Rahardja,et al.  Blockchain-based Education Project , 2021, Aptisi Transactions on Management (ATM).

[12]  Ali Farhadi,et al.  YOLOv3: An Incremental Improvement , 2018, ArXiv.

[13]  U. Rahardja,et al.  Determinants of Lecturer Performance to Enhance Accreditation in Higher Education , 2020, 2020 8th International Conference on Cyber and IT Service Management (CITSM).

[14]  Pardomuan Robinson Sihombing,et al.  COMPARISON OF MACHINE LEARNING METHODS IN CLASSIFYING POVERTY IN INDONESIA IN 2018 , 2021 .

[15]  Xu Wang,et al.  Traffic Signs Detection Based on Faster R-CNN , 2017, 2017 IEEE 37th International Conference on Distributed Computing Systems Workshops (ICDCSW).

[16]  Hadha Afrisal Metode Pengenalan Tempat Secara Visual Berbasis Fitur CNN untuk Navigasi Robot di Dalam Gedung , 2019 .

[17]  Feng Gao,et al.  Vision-based vehicle detecting and counting for traffic flow analysis , 2016, 2016 International Joint Conference on Neural Networks (IJCNN).

[18]  Hong Zhang,et al.  Automatic Ship Detection Based on RetinaNet Using Multi-Resolution Gaofen-3 Imagery , 2019, Remote. Sens..

[19]  I Wayan Suartika Eka Putra,et al.  Klasifikasi Citra Menggunakan Convolutional Neural Network (CNN) pada Caltech 101 , 2016 .

[20]  Niall O' Mahony,et al.  Deep Learning vs. Traditional Computer Vision , 2019, CVC.

[21]  Qurotul Aini,et al.  Inovasi Manajemen Proyek I-Learning Menggunakan Metode Agile Scrumban , 2020 .

[22]  De Xu,et al.  Face Detection With Different Scales Based on Faster R-CNN , 2019, IEEE Transactions on Cybernetics.

[23]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[24]  Ben Glocker,et al.  Improving RetinaNet for CT Lesion Detection with Dense Masks from Weak RECIST Labels , 2019, MICCAI.

[25]  Achmad Nizar Hidayanto,et al.  Immutability of Distributed Hash Model on Blockchain Node Storage , 2021, Scientific Journal of Informatics.

[26]  Md. Sumon Shahriar,et al.  Behavior classification of cows fitted with motion collars: Decomposing multi-class classification into a set of binary problems , 2016, Comput. Electron. Agric..

[27]  Dedy Agung Prabowo,et al.  Deteksi dan Perhitungan Objek Berdasarkan Warna Menggunakan Color Object Tracking , 2018 .

[28]  Christophe Phillips,et al.  Multiclass classification of FDG PET scans for the distinction between Parkinson's disease and atypical parkinsonian syndromes , 2013, NeuroImage: Clinical.

[29]  Ali Farhadi,et al.  YOLO9000: Better, Faster, Stronger , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  Anjar Wanto,et al.  PENERAPAN JARINGAN SARAF TIRUAN DALAM MEMPREDIKSI JUMLAH KEMISKINAN PADA KABUPATEN/KOTA DI PROVINSI RIAU , 2018 .

[31]  Johannes Stallkamp,et al.  The German Traffic Sign Recognition Benchmark: A multi-class classification competition , 2011, The 2011 International Joint Conference on Neural Networks.

[32]  Nuke Puji Lestari Santoso,et al.  Blockchain For Education Purpose: Essential Topology , 2021, Aptisi Transactions on Management (ATM).