Isoperimetric problems for the helicity of vector fields and the Biot–Savart and curl operators
暂无分享,去创建一个
Dennis DeTurck | Jason Cantarella | Herman Gluck | H. Gluck | D. DeTurck | J. Cantarella | Mikhail Teytel | Mikhail Teytel
[1] H. K. Moffatt. Topological aspects of the dynamics of fluids and plasmas , 1992 .
[2] Jane Gilman,et al. Upper bounds for the writhing of knots and the helicity of vector fields , 2001 .
[3] Dennis DeTurck,et al. The Biot–Savart operator for application to knot theory, fluid dynamics, and plasma physics , 2001 .
[4] Franz Rellich,et al. Perturbation Theory of Eigenvalue Problems , 1969 .
[5] S. Vainshtein. Force-Free Magnetic Fields with Constant Alpha , 1992 .
[6] H. K. Moffatt,et al. Helicity and the Călugăreanu invariant , 1992, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.
[7] Dennis DeTurck,et al. The spectrum of the curl operator on spherically symmetric domains , 2000 .
[8] H. K. Moffatt,et al. The degree of knottedness of tangled vortex lines , 1969, Journal of Fluid Mechanics.
[9] Alexei A. Pevtsov,et al. Magnetic Helicity in Space and Laboratory Plasmas , 1999 .
[10] L. Woltjer,et al. A THEOREM ON FORCE-FREE MAGNETIC FIELDS. , 1958, Proceedings of the National Academy of Sciences of the United States of America.
[11] Vladimir I. Arnold,et al. The asymptotic Hopf invariant and its applications , 1974 .
[12] J. Cantarella. Topological structure of stable plasma flows , 1999 .
[13] M. Berger,et al. The topological properties of magnetic helicity , 1984, Journal of Fluid Mechanics.
[14] Königlichen Gesllschaft der Wissenschaften zu Göttingen,et al. Zur Mathematischen Theorie der Electrodynamischen Wirkungen , 1877 .
[15] H. K. Moffatt,et al. The Helicity of a Knotted Vortex Filament , 1992 .