Deployment and scalability of an inter-domain multi-path routing infrastructure

Path aware networking (PAN) is a promising approach that enables endpoints to participate in end-to-end path selection. PAN unlocks numerous benefits, such as fast failover after link failures, application-based path selection and optimization, and native interdomain multi-path. The utility of PAN hinges on the availability of a large number of high-quality path options. In an inter-domain context, two core questions arise. Can we deploy such an architecture natively in today's Internet infrastructure without creating an overlay relying on BGP? Can we build a scalable multi-path routing system that provides a large number of high-quality paths? We first report on the real-world native deployment of the SCION next-generation architecture, providing a usable PAN infrastructure operating in parallel to today's Internet. We then analyze the scalability of the architecture in an Internet-scale topology. Finally, we introduce a new routing approach to further improve scalability.

[1]  Joeri de Ruiter,et al.  Next-generation internet at terabit speed: SCION in P4 , 2021, Conference on Emerging Network Experiment and Technology.

[2]  David Hausheer,et al.  Towards SCION-enabled IXPs: The SCION Peering Coordinator , 2021 .

[3]  David Hausheer,et al.  Linc: low-cost inter-domain connectivity for industrial systems , 2021, SIGCOMM Posters and Demos.

[4]  Joeri de Ruiter,et al.  Global Distributed Secure Mapping of Network Addresses , 2021, TAURIN@SIGCOMM.

[5]  David Hausheer,et al.  S3MP: A SCION based Secure Smart Metering Platform , 2021, 2021 IFIP/IEEE International Symposium on Integrated Network Management (IM).

[6]  David Hausheer,et al.  SCIONLAB: A Next-Generation Internet Testbed , 2020, 2020 IEEE 28th International Conference on Network Protocols (ICNP).

[7]  Ewa Deelman,et al.  FABRIC: A National-Scale Programmable Experimental Network Infrastructure , 2019, IEEE Internet Computing.

[8]  Patrick Sattler,et al.  Prefix Top Lists: Gaining Insights with Prefixes from Domain-based Top Lists on DNS Deployment , 2019, Internet Measurement Conference.

[9]  Aurojit Panda,et al.  Enabling a permanent revolution in internet architecture , 2019, SIGCOMM.

[10]  Mark Handley,et al.  On low-latency-capable topologies, and their impact on the design of intra-domain routing , 2018, SIGCOMM.

[11]  Kotikalapudi Sriram BGPsec Design Choices and Summary of Supporting Discussions , 2018, RFC.

[12]  Adrian Perrig,et al.  SCION: A Secure Internet Architecture , 2017, Information Security and Cryptography.

[13]  Adrian Perrig,et al.  The SCION internet architecture , 2017, Commun. ACM.

[14]  David Thaler Planning for Protocol Adoption and Subsequent Transitions , 2017, RFC.

[15]  Piotr Gawlowicz,et al.  A survey on methods to provide interdomain multipath transmissions , 2016, Comput. Networks.

[16]  Ying Liu,et al.  MIFO: Multi-path Interdomain Forwarding , 2015, 2015 44th International Conference on Parallel Processing.

[17]  Scott Shenker,et al.  Route Bazaar: Automatic Interdomain Contract Negotiation , 2015, HotOS.

[18]  Alvaro Retana Advertisement of Multiple Paths in BGP: Implementation Report , 2015 .

[19]  George N. Rouskas,et al.  ChoiceNet: toward an economy plane for the internet , 2014, CCRV.

[20]  George N. Rouskas,et al.  ChoiceNet: Network innovation through choice , 2013, 2013 17th International Conference on Optical Networking Design and Modeling (ONDM).

[21]  Marcelo Bagnulo,et al.  BGP-XM: BGP eXtended Multipath for transit Autonomous Systems , 2013, Comput. Networks.

[22]  Andreas Haeberlen,et al.  The Nebula Future Internet Architecture , 2013, Future Internet Assembly.

[23]  Srinivasan Seshan,et al.  XIA: Efficient Support for Evolvable Internetworking , 2012, NSDI.

[24]  Wei Zhang,et al.  AMIR: Another Multipath Interdomain Routing , 2012, 2012 IEEE 26th International Conference on Advanced Information Networking and Applications.

[25]  Srinivasan Seshan,et al.  XIA: an architecture for an evolvable and trustworthy internet , 2011, HotNets-X.

[26]  Nick McKeown,et al.  Architecting for innovation , 2011, CCRV.

[27]  T. Kelly Plutarch , 2002, The Classical Review.

[28]  Brighten Godfrey,et al.  YAMR: yet another multipath routing protocol , 2010, CCRV.

[29]  Brighten Godfrey,et al.  Pathlet routing , 2009, SIGCOMM '09.

[30]  Lixin Gao,et al.  Path Diversity Aware Interdomain Routing , 2009, IEEE INFOCOM 2009.

[31]  Lixin Gao,et al.  Reliable interdomain routing through multiple complementary routing processes , 2008, CoNEXT '08.

[32]  Santosh S. Vempala,et al.  Path splicing , 2008, SIGCOMM '08.

[33]  X.. Yang,et al.  NIRA: A New Inter-Domain Routing Architecture , 2007, IEEE/ACM Transactions on Networking.

[34]  Bruce M. Maggs,et al.  R-BGP: Staying Connected in a Connected World , 2007, NSDI.

[35]  J. Rexford,et al.  MIRO: multi-path interdomain routing , 2006, SIGCOMM.

[36]  Xiaowei Yang,et al.  Source selectable path diversity via routing deflections , 2006, SIGCOMM.

[37]  Nick Feamster,et al.  In VINI veritas: realistic and controlled network experimentation , 2006, SIGCOMM.

[38]  Mark Handley,et al.  HLP: a next generation inter-domain routing protocol , 2005, SIGCOMM '05.

[39]  M. Handley,et al.  HLP , 2005, Proceedings of the 2005 conference on Applications, technologies, architectures, and protocols for computer communications - SIGCOMM '05.

[40]  David R. Cheriton,et al.  Loose source routing as a mechanism for traffic policies , 2004, FDNA '04.

[41]  A. Snoeren,et al.  A system for authenticated policy-compliant routing , 2004, SIGCOMM '04.

[42]  Jon Crowcroft,et al.  Plutarch: an argument for network pluralism , 2003, FDNA '03.

[43]  Shivkumar Kalyanaraman,et al.  BANANAS: an evolutionary framework for explicit and multipath routing in the internet , 2003, FDNA '03.

[44]  D. Andersen,et al.  Resilient overlay networks , 2002, CCRV.

[45]  Yakov Rekhter,et al.  A Border Gateway Protocol 4 (BGP-4) , 1994, RFC.