Analysis of fluorescent nanostructures in biological systems by means of Spectral Position Determination Microscopy (SPDM)
暂无分享,去创建一个
Christoph Cremer | Sabina Hillebrandt | Manuel Gunkel | Michael Hausmann | Yanina Weiland | Patrick Müller | Rainer Kaufmann | M. Hausmann | C. Cremer | R. Kaufmann | M. Gunkel | Y. Weiland | P. Müller | M. Hausmann | S. Hillebrandt | M. Hausmann | Sabina Hillebrandt
[1] Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung , 1873 .
[2] I. Hassinen,et al. Oxidation-reduction midpoint potentials of mitochondrial flavoproteins and their intramitochondrial localization , 1978, Journal of bioenergetics and biomembranes.
[3] G. V. Miller,et al. Calibration of microspectrophotometers as it applies to the detection of lipofuscin and the blue- and yellow-emitting fluorophores in situ. , 1984, Methods in enzymology.
[4] W. Kunz,et al. Contribution of different enzymes to flavoprotein fluorescence of isolated rat liver mitochondria. , 1985, Biochimica et biophysica acta.
[5] M Tsuchida,et al. Lipofuscin and lipofuscin-like substances. , 1987, Chemistry and physics of lipids.
[6] M. Schmid,et al. Organization of DYZ2 repetitive DNA on the human Y chromosome. , 1990, Genomics.
[7] David H. L. Bishop,et al. The International Committee on Taxonomy of Viruses , 1995 .
[8] Cremer,et al. High‐precision distance measurements and volume‐conserving segmentation of objects near and below the resolution limit in three‐dimensional confocal fluorescence microscopy , 1998 .
[9] B. Jähne,et al. Handbook of Computer Vision and Applications: Volume 1: From Scenes to Images , 1999 .
[10] Christoph Cremer,et al. Spectral precision distance confocal microscopy for the analysis of molecular nuclear structure , 1999 .
[11] N. Kanomata,et al. Mammary carcinoma with prominent cytoplasmic lipofuscin granules mimicking melanocytic differentiation , 2000, Histopathology.
[12] C Cremer,et al. Three‐dimensional spectral precision distance microscopy of chromatin nanostructures after triple‐colour DNA labelling: a study of the BCR region on chromosome 22 and the Philadelphia chromosome , 2000, Journal of microscopy.
[13] Y. Matsumoto. Lipofuscin pigmentation in pleomorphic adenoma of the palate. , 2001, Oral surgery, oral medicine, oral pathology, oral radiology, and endodontics.
[14] Tobias Knoch,et al. Approaching the three-dimensional organization of the human genome: structural-, scaling- and dynamic properties in the simulation of interphase chromosomes and cell nuclei, long-range correlations in complete genomes, in vivo quantification of the chromat , 2002 .
[15] George H. Patterson,et al. A Photoactivatable GFP for Selective Photolabeling of Proteins and Cells , 2002, Science.
[16] Rainer Heintzmann,et al. High-resolution colocalization of single dye molecules by fluorescence lifetime imaging microscopy. , 2002, Analytical chemistry.
[17] Christoph Cremer,et al. Spatially modulated illumination microscopy allows axial distance resolution in the nanometer range. , 2002, Applied optics.
[18] M. Reddehase,et al. Two Antigenic Peptides from Genes m123 and m164 of Murine Cytomegalovirus Quantitatively Dominate CD8 T-Cell Memory in the H-2d Haplotype , 2002, Journal of Virology.
[19] Christoph Cremer,et al. COMBO-FISH: specific labeling of nondenatured chromatin targets by computer-selected DNA oligonucleotide probe combinations. , 2003, BioTechniques.
[20] J. Schmidtke,et al. Characterisation of a human Y chromosome repeated sequence and related sequences in higher primates , 2004, Chromosoma.
[21] Lord Rayleigh,et al. On the Theory of Optical Images, with Special Reference to the Microscope , 1903 .
[22] Michael Schaefer,et al. Reversible photobleaching of enhanced green fluorescent proteins. , 2005, Biochemistry.
[23] J. Lippincott-Schwartz,et al. Imaging Intracellular Fluorescent Proteins at Nanometer Resolution , 2006, Science.
[24] H. Shimasaki,et al. Isolation and analysis of age-related fluorescent substances in rat testes , 1980, Lipids.
[25] Michael D. Mason,et al. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. , 2006, Biophysical journal.
[26] Michael J Rust,et al. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM) , 2006, Nature Methods.
[27] Caitlin Smith. Keeping tabs on fluorescent tags , 2007, Nature Methods.
[28] David Baddeley,et al. Nanostructure analysis using spatially modulated illumination microscopy , 2003, Nature Protocols.
[29] S. Hell,et al. Fluorescence nanoscopy by ground-state depletion and single-molecule return , 2008, Nature Methods.
[30] David Baddeley,et al. High-precision structural analysis of subnuclear complexes in fixed and live cells via spatially modulated illumination (SMI) microscopy , 2008, Chromosome Research.
[31] Thomas Cremer,et al. Light optical precision measurements of the active and inactive Prader-Willi syndrome imprinted regions in human cell nuclei. , 2008, Differentiation; research in biological diversity.
[32] M. Hausmann,et al. SPDM: light microscopy with single-molecule resolution at the nanoscale , 2008 .
[33] M. Heilemann,et al. Subdiffraction-resolution fluorescence imaging with conventional fluorescent probes. , 2008, Angewandte Chemie.
[34] D. Baddeley,et al. Using conventional fluorescent markers for far‐field fluorescence localization nanoscopy allows resolution in the 10‐nm range , 2009, Journal of microscopy.
[35] Mark Bates,et al. Super-resolution fluorescence microscopy. , 2009, Annual review of biochemistry.
[36] David Baddeley,et al. SPDM: single molecule superresolution of cellular nanostructures , 2009, BiOS.
[37] K. Rippe,et al. Dual color localization microscopy of cellular nanostructures , 2009, Biotechnology journal.
[38] Christoph Cremer,et al. Localization microscopy reveals expression-dependent parameters of chromatin nanostructure. , 2010, Biophysical journal.
[39] Christoph Cremer,et al. Combining FISH with localisation microscopy: Super-resolution imaging of nuclear genome nanostructures , 2010, Chromosome Research.
[40] Christoph Cremer,et al. COMBO-FISH Enables High Precision Localization Microscopy as a Prerequisite for Nanostructure Analysis of Genome Loci , 2010, International journal of molecular sciences.
[41] M. Gunkel. Lokalisationsmikroskopie mit mehreren Farben und ihre Anwendung in biologischen Präparaten , 2011 .
[42] P. Müller. Molekularbiologische Analyse von Her2/neu-Nanostrukturen in unterschiedlichen Brustkrebszelllinien auf Gen- und Proteinebene basierend auf hochaufgelösten fluoreszenzmikroskopischen Darstellungen , 2011 .
[43] M. Hausmann,et al. Imaging label-free intracellular structures by localisation microscopy. , 2011, Micron.
[44] C Cremer,et al. Analysis of Her2/neu membrane protein clusters in different types of breast cancer cells using localization microscopy , 2011, Journal of microscopy.
[45] Christoph Cremer,et al. Superresolution imaging of biological nanostructures by spectral precision distance microscopy , 2011, Biotechnology journal.
[46] Manfred Kirchgessner,et al. Visualization and Quantitative Analysis of Reconstituted Tight Junctions Using Localization Microscopy , 2012, PloS one.
[47] C. Cremer. Optics Far Beyond the Diffraction Limit , 2012 .