Spin–orbit qubit in a semiconductor nanowire

Motion of electrons can influence their spins through a fundamental effect called spin–orbit interaction. This interaction provides a way to control spins electrically and thus lies at the foundation of spintronics. Even at the level of single electrons, the spin–orbit interaction has proven promising for coherent spin rotations. Here we implement a spin–orbit quantum bit (qubit) in an indium arsenide nanowire, where the spin–orbit interaction is so strong that spin and motion can no longer be separated. In this regime, we realize fast qubit rotations and universal single-qubit control using only electric fields; the qubits are hosted in single-electron quantum dots that are individually addressable. We enhance coherence by dynamically decoupling the qubits from the environment. Nanowires offer various advantages for quantum computing: they can serve as one-dimensional templates for scalable qubit registers, and it is possible to vary the material even during wire growth. Such flexibility can be used to design wires with suppressed decoherence and to push semiconductor qubit fidelities towards error correction levels. Furthermore, electrical dots can be integrated with optical dots in p–n junction nanowires. The coherence times achieved here are sufficient for the conversion of an electronic qubit into a photon, which can serve as a flying qubit for long-distance quantum communication.

[1]  Thaddeus D. Ladd,et al.  Complete quantum control of a single quantum dot spin using ultrafast optical pulses , 2008, Nature.

[2]  Jacob M. Taylor,et al.  Suppressing Spin Qubit Dephasing by Nuclear State Preparation , 2008, Science.

[3]  C. Buizert,et al.  Detection of single electron spin resonance in a double quantum dot , 2007, 0704.1628.

[4]  E. Rashba,et al.  Orbital mechanisms of electron-spin manipulation by an electric field. , 2003, Physical review letters.

[5]  A. Gossard,et al.  Hyperfine-mediated gate-driven electron spin resonance. , 2007, Physical review letters.

[6]  D. D. Awschalom,et al.  Gigahertz Dynamics of a Strongly Driven Single Quantum Spin , 2009, Science.

[7]  A. Gossard,et al.  Interlaced dynamical decoupling and coherent operation of a singlet-triplet qubit. , 2010, Physical review letters.

[8]  D. Loss,et al.  Spin dynamics in InAs nanowire quantum dots coupled to a transmission line , 2007, 0708.2091.

[9]  K. Ensslin,et al.  Spin-state mixing in InAs double quantum dots , 2007, 0704.0980.

[10]  Daniel Loss,et al.  Direct measurement of the spin-orbit interaction in a two-electron InAs nanowire quantum dot. , 2007, Physical review letters.

[11]  L. Vandersypen,et al.  Spin echo of a single electron spin in a quantum dot. , 2007, Physical review letters.

[12]  A. Yacoby,et al.  Universal quantum control of two-electron spin quantum bits using dynamic nuclear polarization , 2009, 1009.5343.

[13]  L. Vandersypen,et al.  Universal phase shift and nonexponential decay of driven single-spin oscillations. , 2007, Physical review letters.

[14]  L. Vandersypen,et al.  Supporting Online Material for Coherent Control of a Single Electron Spin with Electric Fields Materials and Methods Som Text Figs. S1 and S2 References , 2022 .

[15]  L. Vandersypen,et al.  Control and Detection of Singlet-Triplet Mixing in a Random Nuclear Field , 2005, Science.

[16]  A. Gossard,et al.  Gigahertz Electron Spin Manipulation Using Voltage-Controlled g-Tensor Modulation , 2003, Science.

[17]  L. Vandersypen,et al.  Spins in few-electron quantum dots , 2006, cond-mat/0610433.

[18]  A. Yacoby,et al.  Long coherence of electron spins coupled to a nuclear spin bath , 2010, 1005.2995.

[19]  Lande g Factors and Orbital Momentum Quenching in Semiconductor Quantum Dots , 2004, cond-mat/0410678.

[20]  S. Datta,et al.  Electronic analog of the electro‐optic modulator , 1990 .

[21]  Jacob M. Taylor,et al.  Coherent Manipulation of Coupled Electron Spins in Semiconductor Quantum Dots , 2005, Science.

[22]  Y. Nazarov,et al.  Pauli spin blockade in the presence of strong spin-orbit coupling , 2009, 0905.1818.

[23]  D. Loss,et al.  Electric-dipole-induced spin resonance in quantum dots , 2006, cond-mat/0601674.

[24]  L. A. Coldren,et al.  Picosecond Coherent Optical Manipulation of a Single Electron Spin in a Quantum Dot , 2008, Science.

[25]  V. Zwiller,et al.  Single quantum dot nanowire LEDs. , 2007, Nano letters.

[26]  S. Tarucha,et al.  Coherent manipulation of individual electron spin in a double quantum dot integrated with a micromagnet , 2010, 1002.0897.

[27]  Jacob M. Taylor,et al.  Triplet–singlet spin relaxation via nuclei in a double quantum dot , 2005, Nature.

[28]  E. Bakkers,et al.  Disentangling the effects of spin-orbit and hyperfine interactions on spin blockade , 2010, 1002.2120.

[29]  C. Buizert,et al.  Driven coherent oscillations of a single electron spin in a quantum dot , 2006, Nature.

[30]  Val Zwiller,et al.  Selective excitation and detection of spin states in a single nanowire quantum dot. , 2009, Nano letters.

[31]  S. Tarucha,et al.  Electrically driven single-electron spin resonance in a slanting Zeeman field , 2008, 0805.1083.