Local deformations revealed by dynamics simulations of DNA polymerase Beta with DNA mismatches at the primer terminus.

[1]  F. Crick,et al.  Genetical Implications of the Structure of Deoxyribonucleic Acid , 1953, Nature.

[2]  Wolfram Saenger,et al.  Principles of Nucleic Acid Structure , 1983 .

[3]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[4]  T. Steitz,et al.  Structure of large fragment of Escherichia coli DNA polymerase I complexed with dTMP , 2020, Nature.

[5]  Barry Honig,et al.  Focusing of electric fields in the active site of Cu‐Zn superoxide dismutase: Effects of ionic strength and amino‐acid modification , 1986, Proteins.

[6]  T. Kunkel,et al.  The base substitution fidelity of eucaryotic DNA polymerases. Mispairing frequencies, site preferences, insertion preferences, and base substitution by dislocation. , 1986, The Journal of biological chemistry.

[7]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I (Klenow). , 1987, Biochemistry.

[8]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I , 1987 .

[9]  M Karplus,et al.  Polar hydrogen positions in proteins: Empirical energy placement and neutron diffraction comparison , 1988, Proteins.

[10]  K. Sharp,et al.  Calculating the electrostatic potential of molecules in solution: Method and error assessment , 1988 .

[11]  J. Korenberg,et al.  Analysis of human chromosome 21: correlation of physical and cytogenetic maps; gene and CpG island distributions. , 1990, The EMBO journal.

[12]  Ron Elber,et al.  Calculation of the potential of mean force using molecular dynamics with linear constraints: An application to a conformational transition in a solvated dipeptide , 1990 .

[13]  M. Goodman,et al.  Base mispair extension kinetics. Comparison of DNA polymerase alpha and reverse transcriptase. , 1990, The Journal of biological chemistry.

[14]  T. Steitz,et al.  Structural basis for the 3′‐5′ exonuclease activity of Escherichia coli DNA polymerase I: a two metal ion mechanism. , 1991, The EMBO journal.

[15]  K. Johnson,et al.  An induced-fit kinetic mechanism for DNA replication fidelity: direct measurement by single-turnover kinetics. , 1991, Biochemistry.

[16]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[17]  H. Echols,et al.  Fidelity mechanisms in DNA replication. , 1991, Annual review of biochemistry.

[18]  S. Benkovic,et al.  Kinetic mechanism of DNA polymerase I (Klenow fragment): identification of a second conformational change and evaluation of the internal equilibrium constant. , 1991, Biochemistry.

[19]  Smita S. Patel,et al.  Pre-steady-state kinetic analysis of processive DNA replication including complete characterization of an exonuclease-deficient mutant. , 1991, Biochemistry.

[20]  S. Benkovic,et al.  Kinetic characterization of the polymerase and exonuclease activities of the gene 43 protein of bacteriophage T4. , 1992, Biochemistry.

[21]  K. Anderson,et al.  Mechanism and fidelity of HIV reverse transcriptase. , 1992, The Journal of biological chemistry.

[22]  T. Steitz DNA- and RNA-dependent DNA polymerases , 1993, Structural Insights into Gene Expression and Protein Synthesis.

[23]  T. Steitz,et al.  Structure of DNA polymerase I Klenow fragment bound to duplex DNA , 1993, Science.

[24]  S. Creighton,et al.  Biochemical basis of DNA replication fidelity. , 1993, Critical reviews in biochemistry and molecular biology.

[25]  Jürgen Schlitter,et al.  Targeted Molecular Dynamics Simulation of Conformational Change-Application to the T ↔ R Transition in Insulin , 1993 .

[26]  K. Johnson,et al.  Conformational coupling in DNA polymerase fidelity. , 1993, Annual review of biochemistry.

[27]  Samuel H. Wilson,et al.  Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. , 1994, Science.

[28]  T. Steitz,et al.  A unified polymerase mechanism for nonhomologous DNA and RNA polymerases. , 1994, Science.

[29]  P. Krüger,et al.  Targeted molecular dynamics: a new approach for searching pathways of conformational transitions. , 1994, Journal of molecular graphics.

[30]  Dae-Sil Lee,et al.  Crystal structure of Thermus aquaticus DNA polymerase , 1995, Nature.

[31]  Samuel H. Wilson,et al.  Enzyme-DNA Interactions Required for Efficient Nucleotide Incorporation and Discrimination in Human DNA Polymerase β(*) , 1996, The Journal of Biological Chemistry.

[32]  J. Kraut,et al.  Crystal structures of human DNA polymerase beta complexed with DNA: implications for catalytic mechanism, processivity, and fidelity. , 1996, Biochemistry.

[33]  Thomas A. Steitz,et al.  Structure of Taq polymerase with DNA at the polymerase active site , 1996, Nature.

[34]  X. Zhong,et al.  DNA Polymerase β: Multiple Conformational Changes in the Mechanism of Catalysis† , 1997 .

[35]  K. Anderson,et al.  RNA dependent DNA replication fidelity of HIV-1 reverse transcriptase: evidence of discrimination between DNA and RNA substrates. , 1997, Biochemistry.

[36]  T Schlick,et al.  Biomolecular dynamics at long timesteps: bridging the timescale gap between simulation and experimentation. , 1997, Annual review of biophysics and biomolecular structure.

[37]  L. Beese,et al.  Crystal structure of a thermostable Bacillus DNA polymerase I large fragment at 2.1 A resolution. , 1997, Structure.

[38]  X. Zhong,et al.  DNA polymerase beta: analysis of the contributions of tyrosine-271 and asparagine-279 to substrate specificity and fidelity of DNA replication by pre-steady-state kinetics. , 1997, The Biochemical journal.

[39]  B. Werneburg,et al.  DNA Polymerase β: Structure−Fidelity Relationship from Pre-Steady-State Kinetic Analyses of All Possible Correct and Incorrect Base Pairs for Wild Type and R283A Mutant† , 1997 .

[40]  M Karplus,et al.  Molecular switch in signal transduction: reaction paths of the conformational changes in ras p21. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[41]  X. Zhong,et al.  DNA Polymerase β: Multiple Conformational Changes in the Mechanism of Catalysis† , 1997 .

[42]  J. Kraut,et al.  HUMAN DNA POLYMERASE BETA COMPLEXED WITH NICKED DNA , 1997 .

[43]  M. Goodman,et al.  Hydrogen bonding revisited: geometric selection as a principal determinant of DNA replication fidelity. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[44]  S. Doublié,et al.  The mechanism of action of T7 DNA polymerase. , 1998, Current opinion in structural biology.

[45]  Z. Suo,et al.  Selective Inhibition of HIV-1 Reverse Transcriptase by an Antiviral Inhibitor, (R)-9-(2-Phosphonylmethoxypropyl)adenine* , 1998, The Journal of Biological Chemistry.

[46]  James R. Kiefer,et al.  Visualizing DNA replication in a catalytically active Bacillus DNA polymerase crystal , 1998, Nature.

[47]  Samuel H. Wilson,et al.  DNA polymerases on the move , 1998, Nature Structural Biology.

[48]  G L Verdine,et al.  Structure of a covalently trapped catalytic complex of HIV-1 reverse transcriptase: implications for drug resistance. , 1998, Science.

[49]  S. H. Wilson,et al.  Mammalian base excision repair and DNA polymerase beta. , 1998, Mutation research.

[50]  T. Schlick,et al.  Extrapolation versus impulse in multiple-timestepping schemes. II. Linear analysis and applications to Newtonian and Langevin dynamics , 1998 .

[51]  T. Steitz,et al.  Structural biology: A mechanism for all polymerases , 1998, Nature.

[52]  X. Zhong,et al.  DNA polymerase beta: effects of gapped DNA substrates on dNTP specificity, fidelity, processivity and conformational changes. , 1998, The Biochemical journal.

[53]  W. Beard,et al.  Structural insights into DNA polymerase beta fidelity: hold tight if you want it right. , 1998, Chemistry & biology.

[54]  S. Doublié,et al.  Crystal structure of a bacteriophage T7 DNA replication complex at 2.2 Å resolution , 1998, Nature.

[55]  T. Schlick,et al.  Overcoming stability limitations in biomolecular dynamics. I. Combining force splitting via extrapolation with Langevin dynamics in LN , 1998 .

[56]  Gabriel Waksman,et al.  Crystal structures of open and closed forms of binary and ternary complexes of the large fragment of Thermus aquaticus DNA polymerase I: structural basis for nucleotide incorporation , 1998, The EMBO journal.

[57]  E. Kool Replication of non‐hydrogen bonded bases by DNA polymerases: A mechanism for steric matching , 1998, Biopolymers.

[58]  J. Sweasy,et al.  The E249K Mutator Mutant of DNA Polymerase β Extends Mispaired Termini* , 1999, The Journal of Biological Chemistry.

[59]  Samuel H. Wilson,et al.  Base Substitution Specificity of DNA Polymerase β Depends on Interactions in the DNA Minor Groove* , 1999, The Journal of Biological Chemistry.

[60]  M. Sawaya,et al.  An open and closed case for all polymerases. , 1999, Structure.

[61]  Alexander D. MacKerell,et al.  All-atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution , 2000, J. Comput. Chem..

[62]  W. Beard,et al.  Structural design of a eukaryotic DNA repair polymerase: DNA polymerase beta. , 2000, Mutation research.

[63]  A Caflisch,et al.  Computer simulations of protein folding by targeted molecular dynamics , 2000, Proteins.

[64]  T. Kunkel,et al.  Minor groove interactions at the DNA polymerase beta active site modulate single-base deletion error rates. , 2000, The Journal of biological chemistry.

[65]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[66]  Alexander D. MacKerell,et al.  All‐atom empirical force field for nucleic acids: II. Application to molecular dynamics simulations of DNA and RNA in solution , 2000 .

[67]  K. Guckian,et al.  Mimicking the Structure and Function of DNA: Insights into DNA Stability and Replication. , 2000, Angewandte Chemie.

[68]  P. Declerck,et al.  Extending the capabilities of targeted molecular dynamics: Simulation of a large conformational transition in plasminogen activator inhibitor 1 , 2001, Protein science : a publication of the Protein Society.

[69]  Giulio Superti-Furga,et al.  Dynamic Coupling between the SH2 and SH3 Domains of c-Src and Hck Underlies Their Inactivation by C-Terminal Tyrosine Phosphorylation , 2001, Cell.

[70]  K. Anderson,et al.  Y265H mutator mutant of DNA polymerase beta. Proper teometric alignment is critical for fidelity. , 2001, The Journal of biological chemistry.

[71]  J. Liu,et al.  Insight into the catalytic mechanism of DNA polymerase beta: structures of intermediate complexes. , 2001, Biochemistry.

[72]  E. Kool,et al.  Hydrogen bonding, base stacking, and steric effects in dna replication. , 2001, Annual review of biophysics and biomolecular structure.

[73]  K. Anderson,et al.  Y265H Mutator Mutant of DNA Polymerase β , 2001, The Journal of Biological Chemistry.

[74]  C. Kisker,et al.  Error-Prone DNA Polymerases Novel Structures and the Benefits of Infidelity , 2001, Cell.

[75]  T Schlick,et al.  Time-trimming tricks for dynamic simulations: splitting force updates to reduce computational work. , 2001, Structure.

[76]  Samuel H. Wilson,et al.  DNA Structure and Aspartate 276 Influence Nucleotide Binding to Human DNA Polymerase β , 2001, The Journal of Biological Chemistry.

[77]  Xiao-Ping Yang,et al.  Loss of DNA Polymerase β Stacking Interactions with Templating Purines, but Not Pyrimidines, Alters Catalytic Efficiency and Fidelity* , 2002, The Journal of Biological Chemistry.

[78]  Samuel H. Wilson,et al.  Polymerase beta simulations suggest that Arg258 rotation is a slow step rather than large subdomain motions per se. , 2002, Journal of molecular biology.

[79]  K. Chou,et al.  An exonucleolytic activity of human apurinic/apyrimidinic endonuclease on 3′ mispaired DNA , 2002, Nature.

[80]  T. Kunkel DNA Replication Fidelity* , 2004, Journal of Biological Chemistry.