The highly conserved KEOPS/EKC complex is essential for a universal tRNA modification, t6A

[1]  E. Koonin New variants of known folds: do they bring new biology? , 2010, Acta crystallographica. Section F, Structural biology and crystallization communications.

[2]  H. True,et al.  The Sua5 Protein Is Essential for Normal Translational Regulation in Yeast , 2009, Molecular and Cellular Biology.

[3]  Jianping Ding,et al.  Sua5p a single‐stranded telomeric DNA‐binding protein facilitates telomere replication , 2009, The EMBO journal.

[4]  A. Emili,et al.  Conserved Network of Proteins Essential for Bacterial Viability , 2009, Journal of bacteriology.

[5]  V. de Crécy-Lagard,et al.  The universal YrdC/Sua5 family is required for the formation of threonylcarbamoyladenosine in tRNA , 2009, Nucleic acids research.

[6]  G. Carignani,et al.  Phosphorylation of the Saccharomyces cerevisiae Grx4p glutaredoxin by the Bud32p kinase unveils a novel signaling pathway involving Sch9p, a yeast member of the Akt / PKB subfamily , 2008, The FEBS journal.

[7]  D. Durocher,et al.  Atomic structure of the KEOPS complex: an ancient protein kinase-containing molecular machine. , 2008, Molecular cell.

[8]  P. Forterre,et al.  Structure of the archaeal Kae1/Bud32 fusion protein MJ1130: a model for the eukaryotic EKC/KEOPS subcomplex , 2008, The EMBO journal.

[9]  Kathryn A. O’Donnell,et al.  Toward a comprehensive temperature-sensitive mutant repository of the essential genes of Saccharomyces cerevisiae. , 2008, Molecular cell.

[10]  P. Forterre,et al.  An archaeal orthologue of the universal protein Kae1 is an iron metalloprotein which exhibits atypical DNA-binding properties and apurinic-endonuclease activity in vitro , 2007, Nucleic acids research.

[11]  K. Hofmann,et al.  Yeast homolog of a cancer‐testis antigen defines a new transcription complex , 2006, The EMBO journal.

[12]  David Lydall,et al.  A Genome-Wide Screen Identifies the Evolutionarily Conserved KEOPS Complex as a Telomere Regulator , 2006, Cell.

[13]  Paul F Agris,et al.  The role of modifications in codon discrimination by tRNALysUUU , 2004, Nature Structural &Molecular Biology.

[14]  G. Carignani,et al.  Analysis of the interaction between piD261/Bud32, an evolutionarily conserved protein kinase of Saccharomyces cerevisiae, and the Grx4 glutaredoxin. , 2004, The Biochemical journal.

[15]  K. Isono,et al.  Cloning and nucleotide sequencing of the genes rimI and rimJ which encode enzymes acetylating ribosomal proteins S18 and S5 of Escherichia coli K12 , 1987, Molecular and General Genetics MGG.

[16]  Michael Y. Galperin,et al.  'Conserved hypothetical' proteins: prioritization of targets for experimental study. , 2004, Nucleic acids research.

[17]  G. Carignani,et al.  Structure-function analysis of yeast piD261/Bud32, an atypical protein kinase essential for normal cell life. , 2002, The Biochemical journal.

[18]  P. Agris,et al.  Accurate Translation of the Genetic Code Depends on tRNA Modified Nucleosides* , 2002, The Journal of Biological Chemistry.

[19]  E. Koonin,et al.  Genome alignment, evolution of prokaryotic genome organization, and prediction of gene function using genomic context. , 2001, Genome research.

[20]  P. Agris,et al.  Functional anticodon architecture of human tRNALys3 includes disruption of intraloop hydrogen bonding by the naturally occurring amino acid modification, t6A. , 2000, Biochemistry.

[21]  E. Koonin,et al.  Gleaning non-trivial structural, functional and evolutionary information about proteins by iterative database searches. , 1999, Journal of molecular biology.

[22]  E. Koonin,et al.  Novel families of putative protein kinases in bacteria and archaea: evolution of the "eukaryotic" protein kinase superfamily. , 1998, Genome research.

[23]  Manuel Peitsch,et al.  A genome-based approach for the identification of essential bacterial genes , 1998, Nature Biotechnology.

[24]  P. Philippsen,et al.  Additional modules for versatile and economical PCR‐based gene deletion and modification in Saccharomyces cerevisiae , 1998, Yeast.

[25]  Neil D. Rawlings,et al.  Handbook of proteolytic enzymes , 1998 .

[26]  D. Morris,et al.  Programmed translational frameshifting in a gene required for yeast telomere replication , 1997, Current Biology.

[27]  M. Hampsey,et al.  Isolation and characterization of SUA5, a novel gene required for normal growth in Saccharomyces cerevisiae. , 1992, Genetics.

[28]  R. Lo,et al.  Cloning, nucleotide sequence, and expression of the Pasteurella haemolytica A1 glycoprotease gene , 1991, Journal of bacteriology.

[29]  P. Crain,et al.  Preparation and enzymatic hydrolysis of DNA and RNA for mass spectrometry. , 1990, Methods in enzymology.

[30]  J. Weissenbach,et al.  Effect of Threonylcarbamoyl Modification (t6A) in Yeast tRNAArgIII on Codon‐Anticodon and Anticodon‐Anticodon Interactions , 1981 .

[31]  J. Weissenbach,et al.  Effect of threonylcarbamoyl modification (t6A) in yeast tRNA Arg III on codon-anticodon and anticodon-anticodon interactions. A thermodynamic and kinetic evaluation. , 1981, European journal of biochemistry.

[32]  B. Elkins,et al.  The enzymatic synthesis of N-(purin-6-ylcarbamoyl)threonine, an anticodon-adjacent base in transfer ribonucleic acid. , 1974, Biochemistry.

[33]  D. Söll,et al.  N‐(purin‐6‐ylcarbamoyl)threonine: Biosynthesis in vitro in transfer RNA by an enzyme purified from Escherichia coli , 1974, FEBS letters.