Emerging Non-Aqueous Potassium-Ion Batteries: Challenges and Opportunities

The ever-increasing demand for storing renewable energy sources calls for novel battery technologies that are of sustainably low levelized energy cost. Research into battery chemistry has evolved to a stage where a plethora of choices based on earth-abundant elements can be compared during their development. One of the emerging candidates is the nonaqueous potassium-ion battery. K-ion’s unique properties as a charge carrier have aroused intense interest in exploring high-performing cathode and anode materials for this battery. Rapid progress has been made, where leading candidates of electrodes have been proposed, i.e., hard carbon as anode and Prussian white analogues as cathode. In this new battery technology’s infancy, it is our opinion that the focus should be given to potentially scalable, inexpensive electrode materials and the understanding of their cycle-life-property correlations. It may be the ultralong cycle life that differentiates potassium-ion batteries from sodium-ion batteries in the futur...

[1]  D. Su,et al.  Hard–Soft Composite Carbon as a Long‐Cycling and High‐Rate Anode for Potassium‐Ion Batteries , 2017 .

[2]  Kangsheng Huang,et al.  Phosphorus and oxygen dual-doped graphene as superior anode material for room-temperature potassium-ion batteries , 2017 .

[3]  Xiaohe Song,et al.  A Novel Potassium‐Ion‐Based Dual‐Ion Battery , 2017, Advanced materials.

[4]  Linda F. Nazar,et al.  Crystallite Size Control of Prussian White Analogues for Nonaqueous Potassium-Ion Batteries , 2017 .

[5]  Z. Fu,et al.  Long life and high-rate Berlin green FeFe(CN)6 cathode material for a non-aqueous potassium-ion battery , 2017 .

[6]  Zelang Jian,et al.  Prussian white analogues as promising cathode for non-aqueous potassium-ion batteries , 2017 .

[7]  K. Kubota,et al.  P2- and P3-KxCoO2 as an electrochemical potassium intercalation host. , 2017, Chemical communications.

[8]  A. Glushenkov,et al.  K-ion and Na-ion storage performances of Co3O4-Fe2O3 nanoparticle-decorated super P carbon black prepared by a ball milling process. , 2017, Nanoscale.

[9]  C. Li,et al.  Potassium salts of para-aromatic dicarboxylates as the highly efficient organic anodes for low-cost K-ion batteries , 2017 .

[10]  K. Kubota,et al.  A novel K-ion battery: hexacyanoferrate(II)/graphite cell , 2017 .

[11]  Xiulei Ji,et al.  Hard carbon anodes of sodium-ion batteries: undervalued rate capability. , 2017, Chemical communications.

[12]  Zhixin Chen,et al.  Phosphorus-Based Alloy Materials for Advanced Potassium-Ion Battery Anode. , 2017, Journal of the American Chemical Society.

[13]  Xiaodi Ren,et al.  MoS2 as a long-life host material for potassium ion intercalation , 2017, Nano Research.

[14]  Jun Chen,et al.  High K-storage performance based on the synergy of dipotassium terephthalate and ether-based electrolytes , 2017 .

[15]  Yitong Qi,et al.  Polynanocrystalline Graphite: A New Carbon Anode with Superior Cycling Performance for K-Ion Batteries. , 2017, ACS applied materials & interfaces.

[16]  Xiulei Ji,et al.  Potassium Secondary Batteries. , 2017, ACS applied materials & interfaces.

[17]  F. Liu,et al.  Investigation of K3V2(PO4)3/C nanocomposites as high-potential cathode materials for potassium-ion batteries. , 2017, Chemical communications.

[18]  A. Manthiram,et al.  Low-Cost High-Energy Potassium Cathode. , 2017, Journal of the American Chemical Society.

[19]  J. Tarascon,et al.  Synthesis, Structure, and Electrochemical Properties of K-Based Sulfates K2M2(SO4)3 with M = Fe and Cu. , 2017, Inorganic chemistry.

[20]  Meng Huang,et al.  Earth Abundant Fe/Mn-Based Layered Oxide Interconnected Nanowires for Advanced K-Ion Full Batteries. , 2017, Nano letters.

[21]  Chun-hua Chen,et al.  The role of potassium ions in iron hexacyanoferrate as a cathode material for hybrid ion batteries , 2016 .

[22]  Yutao Li,et al.  Liquid K–Na Alloy Anode Enables Dendrite‐Free Potassium Batteries , 2016, Advanced materials.

[23]  A. Madram,et al.  Effect of Na+ and K+ co-doping on the structure and electrochemical behaviors of LiFePO4/C cathode material for lithium-ion batteries , 2016 .

[24]  Keith Share,et al.  Role of Nitrogen-Doped Graphene for Improved High-Capacity Potassium Ion Battery Anodes. , 2016, ACS nano.

[25]  Yan Yao,et al.  Poly(anthraquinonyl sulfide) cathode for potassium-ion batteries , 2016 .

[26]  Jin Han,et al.  Nanocubic KTi2(PO4)3 electrodes for potassium-ion batteries. , 2016, Chemical communications.

[27]  Jin Han,et al.  Exploration of K2Ti8O17 as an anode material for potassium-ion batteries. , 2016, Chemical communications.

[28]  O. Bondarchuk,et al.  Higher voltage plateau cubic Prussian White for Na-ion batteries , 2016 .

[29]  A. Glushenkov,et al.  Tin-based composite anodes for potassium-ion batteries. , 2016, Chemical communications.

[30]  Jiulin Wang,et al.  Highly Crystallized Na₂CoFe(CN)₆ with Suppressed Lattice Defects as Superior Cathode Material for Sodium-Ion Batteries. , 2016, ACS applied materials & interfaces.

[31]  Clement Bommier,et al.  Hard Carbon Microspheres: Potassium‐Ion Anode Versus Sodium‐Ion Anode , 2016 .

[32]  Yuliang Cao,et al.  Antimony Nanocrystals Encapsulated in Carbon Microspheres Synthesized by a Facile Self-Catalyzing Solvothermal Method for High-Performance Sodium-Ion Battery Anodes. , 2016, ACS applied materials & interfaces.

[33]  Clement Bommier,et al.  Electrochemically Expandable Soft Carbon as Anodes for Na-Ion Batteries , 2015, ACS central science.

[34]  Xiaodi Ren,et al.  Potassium-Ion Oxygen Battery Based on a High Capacity Antimony Anode. , 2015, ACS applied materials & interfaces.

[35]  Steven D. Lacey,et al.  Organic electrode for non-aqueous potassium-ion batteries , 2015 .

[36]  Shinichi Komaba,et al.  Potassium intercalation into graphite to realize high-voltage/high-power potassium-ion batteries and potassium-ion capacitors , 2015 .

[37]  W. Luo,et al.  Potassium Ion Batteries with Graphitic Materials. , 2015, Nano letters.

[38]  Xinping Ai,et al.  Hierarchical Carbon Framework Wrapped Na3V2(PO4)3 as a Superior High‐Rate and Extended Lifespan Cathode for Sodium‐Ion Batteries , 2015, Advanced materials.

[39]  Xiulei Ji,et al.  Carbon Electrodes for K-Ion Batteries. , 2015, Journal of the American Chemical Society.

[40]  Liang Zhou,et al.  Novel K3V2(PO4)3/C Bundled Nanowires as Superior Sodium‐Ion Battery Electrode with Ultrahigh Cycling Stability , 2015 .

[41]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[42]  Linda F Nazar,et al.  The emerging chemistry of sodium ion batteries for electrochemical energy storage. , 2015, Angewandte Chemie.

[43]  J. Goodenough,et al.  Rhombohedral prussian white as cathode for rechargeable sodium-ion batteries. , 2015, Journal of the American Chemical Society.

[44]  Joseph Paul Baboo,et al.  Amorphous iron phosphate: potential host for various charge carrier ions , 2014 .

[45]  Liquan Chen,et al.  Prussian blues as a cathode material for lithium ion batteries. , 2014, Chemistry.

[46]  Philipp Adelhelm,et al.  Use of graphite as a highly reversible electrode with superior cycle life for sodium-ion batteries by making use of co-intercalation phenomena. , 2014, Angewandte Chemie.

[47]  Kai He,et al.  Expanded graphite as superior anode for sodium-ion batteries , 2014, Nature Communications.

[48]  Y. Liu,et al.  In situ transmission electron microscopy study of electrochemical sodiation and potassiation of carbon nanofibers. , 2014, Nano letters.

[49]  Yu-Guo Guo,et al.  High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries , 2014 .

[50]  Yi Cui,et al.  Highly reversible open framework nanoscale electrodes for divalent ion batteries. , 2013, Nano letters.

[51]  C. Ling,et al.  First-Principles Study of Alkali and Alkaline Earth Ion Intercalation in Iron Hexacyanoferrate: The Important Role of Ionic Radius , 2013 .

[52]  Yuki Yamada,et al.  Na2FeP2O7: A Safe Cathode for Rechargeable Sodium-ion Batteries , 2013 .

[53]  Wenwen Deng,et al.  Single-crystal FeFe(CN)6 nanoparticles: a high capacity and high rate cathode for Na-ion batteries , 2013 .

[54]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[55]  Christian Masquelier,et al.  Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. , 2013, Chemical reviews.

[56]  Palani Balaya,et al.  The First Report on Excellent Cycling Stability and Superior Rate Capability of Na3V2(PO4)3 for Sodium Ion Batteries , 2013 .

[57]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[58]  Haoshen Zhou,et al.  Bimetallic cyanide-bridged coordination polymers as lithium ion cathode materials: core@shell nanoparticles with enhanced cyclability. , 2013, Journal of the American Chemical Society.

[59]  J. Tarascon,et al.  Preparation and Characterization of a Stable FeSO4F-Based Framework for Alkali Ion Insertion Electrodes , 2012 .

[60]  Xiaogang Han,et al.  Porous amorphous FePO4 nanoparticles connected by single-wall carbon nanotubes for sodium ion battery cathodes. , 2012, Nano letters.

[61]  Jean-Marie Tarascon,et al.  In search of an optimized electrolyte for Na-ion batteries , 2012 .

[62]  Young Gyu Kim,et al.  Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries , 2012 .

[63]  Seung M. Oh,et al.  Sodium Terephthalate as an Organic Anode Material for Sodium Ion Batteries , 2012, Advanced materials.

[64]  Xinping Ai,et al.  High capacity Na-storage and superior cyclability of nanocomposite Sb/C anode for Na-ion batteries. , 2012, Chemical communications.

[65]  Limin Zhu,et al.  Fe(CN)6−4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries , 2012 .

[66]  Jun Liu,et al.  Sodium ion insertion in hollow carbon nanowires for battery applications. , 2012, Nano letters.

[67]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[68]  Shinichi Komaba,et al.  P2-type Na(x)[Fe(1/2)Mn(1/2)]O2 made from earth-abundant elements for rechargeable Na batteries. , 2012, Nature materials.

[69]  Haoshen Zhou,et al.  Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability , 2012 .

[70]  Jinbao Zhang,et al.  Synthesis and electrochemical properties of K-doped LiFePO4/C composite as cathode material for lithium-ion batteries , 2012, Journal of Solid State Electrochemistry.

[71]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[72]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[73]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[74]  Wataru Murata,et al.  Fluorinated ethylene carbonate as electrolyte additive for rechargeable Na batteries. , 2011, ACS applied materials & interfaces.

[75]  M. Ávila,et al.  Cation mobility and structural changes on the water removal in zeolite-like zinc hexacyanometallates (II) , 2011 .

[76]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[77]  Haoshen Zhou,et al.  The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. , 2008, Angewandte Chemie.

[78]  M. Armand,et al.  Building better batteries , 2008, Nature.

[79]  P. Bruce,et al.  Macroporous Li(Ni1/3Co1/3Mn1/3)O2: A High‐Power and High‐Energy Cathode for Rechargeable Lithium Batteries , 2006 .

[80]  T. Sasaki,et al.  Synthesis and soft-chemical reactivity of layered potassium cobalt oxide , 2005 .

[81]  O. Yakubovich,et al.  A New Type of Anionic Framework in Microporous Potassium Iron(II) Phosphate K[Fe(PO4)] , 2005 .

[82]  A. Eftekhari Potassium secondary cell based on Prussian blue cathode , 2004 .

[83]  T. Abe,et al.  Creation of nanospaces by intercalation of alkali metals into graphite in organic solutions , 2001 .

[84]  D. Aurbach,et al.  Investigation of the electrochemical windows of aprotic alkali metal (Li, Na, K) salt solutions , 2001 .

[85]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[86]  D. Stevens,et al.  High Capacity Anode Materials for Rechargeable Sodium‐Ion Batteries , 2000 .

[87]  H. Sakaebe,et al.  Lithium intercalation behavior of iron cyanometallates , 1999 .

[88]  Y. Marcus Thermodynamic functions of transfer of single ions from water to nonaqueous and mixed solvents: Part 3 - Standard potentials of selected electrodes , 1985 .

[89]  A. L. Crumbliss,et al.  Alkali Metal Cation Effects in a Prussian Blue Surface Modified Electrode , 1984 .

[90]  Kingo Itaya,et al.  Spectroelectrochemistry and electrochemical preparation method of Prussian blue modified electrodes , 1982 .

[91]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[92]  R. D. Shannon Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides , 1976 .

[93]  P. Hagenmuller,et al.  Les bronzes de cobalt KxCoO2 (x < 1). L'oxyde KCoO2 , 1975 .

[94]  N. Matsuura,et al.  Standard Potentials of Alkali Metals, Silver, and Thallium Metal/Ion Couples in N,N′-Dimethylformamide, Dimethyl Sulfoxide, and Propylene Carbonate , 1974 .

[95]  R. Franklin Crystallite growth in graphitizing and non-graphitizing carbons , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[96]  A. Schleede,et al.  Notiz über die Herstellung eines Lindemannglases für Kapillaren zwecks Aufnahme von luftempfindlichen Substanzen mit langwelliger Röntgenstrahlung , 1932 .

[97]  Yuki Yamada,et al.  Theoretical Analysis of Interactions between Potassium Ions and Organic Electrolyte Solvents: A Comparison with Lithium, Sodium, and Magnesium Ions , 2017 .

[98]  S. Fedotov,et al.  Transport and Kinetic Aspects of Alkali Metal Ions Intercalation into AVPO4F Framework , 2017 .

[99]  Yang Xu,et al.  Potassium Prussian Blue Nanoparticles: A Low‐Cost Cathode Material for Potassium‐Ion Batteries , 2017 .

[100]  N. Munichandraiah,et al.  K2Ti4O9: A Promising Anode Material for Potassium Ion Batteries , 2016 .

[101]  J. Tarascon,et al.  Na Reactivity toward Carbonate-Based Electrolytes: The Effect of FEC as Additive , 2016 .

[102]  S. Passerini,et al.  Non-Aqueous K-Ion Battery Based on Layered K0.3MnO2 and Hard Carbon/Carbon Black , 2016 .

[103]  Liangbing Hu,et al.  A perylene anhydride crystal as a reversible electrode for K-ion batteries , 2016 .

[104]  Huilin Pan,et al.  Carbon coated Na3V2(PO4)3 as novel electrode material for sodium ion batteries , 2012 .

[105]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[106]  Wangxing Li,et al.  Electrochemical intercalation of potassium into graphite in KF melt , 2010 .

[107]  T. Abe,et al.  Graphite intercalation compounds prepared in solutions of alkali metals in 2-methyltetrahydrofuran and 2,5-dimethyltetrahydrofuran , 1997 .

[108]  E. Matuyama Successive Stages of a Graphite–Potassium Compound and its Thermal Expansion , 1962, Nature.