Optical oxygen sensing materials based on the room-temperature phosphorescence intensity quenching of immobilized Erythrosin B

The organic dye, Erythrosin B, exhibits strong room-temperature phosphorescence (RTP) when adsorbed on non-ionic resins or when encapsulated in silicone rubber films. In this paper, oxygen transducers based on the RTP intensity quenching of the immobilized dye (on Amberlite XAD-2 or embedded in silicone) have been optically and analytically characterized using continuous and gas-phase flow injection systems. The sensing phases proved to have good photochemical stability. Detection limits of 0.0005% of oxygen in dry argon were found and sr values of around 0.3%(at 0.02% oxygen level) were achieved. Typical response times were less than 2 s for full signal change and no hysteresis in the response was observed.