Local resolved investigation of hydrogen crossover in polymer electrolyte fuel cell

[1]  Rui Lin,et al.  Experimental study of variable operating parameters effects on overall PEMFC performance and spatial performance distribution , 2016 .

[2]  W. Xuhui,et al.  In situ investigation of proton exchange membrane fuel cell performance with novel segmented cell design and a two-phase flow model , 2016 .

[3]  Abdul-Ghani Olabi,et al.  Developments in fuel cell technologies in the transport sector , 2016 .

[4]  Shixiang Xia,et al.  Local resolved investigation of PEMFC performance degradation mechanism during dynamic driving cycle , 2016 .

[5]  S. Rowshanzamir,et al.  Study of hydrogen crossover and proton conductivity of self-humidifying nanocomposite proton exchange membrane based on sulfonated poly (ether ether ketone) , 2016 .

[6]  Min-Soo Kim,et al.  Experimental study on the start-up with dry gases from normal cell temperatures in self-humidified proton exchange membrane fuel cells , 2015 .

[7]  Merit Bodner,et al.  Effect of pinhole location on degradation in polymer electrolyte fuel cells , 2015 .

[8]  Cheng Bao,et al.  Two-dimensional modeling of a polymer electrolyte membrane fuel cell with long flow channel. Part II. Physics-based electrochemical impedance analysis , 2015 .

[9]  Yeh-Hung Lai,et al.  In-situ diagnostics and degradation mapping of a mixed-mode accelerated stress test for proton exchange membranes , 2015 .

[10]  J. Scholta,et al.  Investigation of degradation effects in polymer electrolyte fuel cells under automotive-related operating conditions☆ , 2015 .

[11]  S. Wereley,et al.  soft matter , 2019, Science.

[12]  Lin Yu,et al.  Hydrogen crossover through perfluorosulfonic acid membranes with variable side chains and its influence in fuel cell lifetime , 2014 .

[13]  K. Sundmacher,et al.  In-situ measurement of hydrogen crossover in polymer electrolyte membrane water electrolysis , 2014 .

[14]  K. Kreuer,et al.  The role of internal pressure for the hydration and transport properties of ionomers and polyelectrolytes , 2013 .

[15]  Timothy J. Peckham,et al.  Selective formation of hydrogen and hydroxyl radicals by electron beam irradiation and their reactivity with perfluorosulfonated acid ionomer. , 2013, Journal of the American Chemical Society.

[16]  T. Morawietz,et al.  Atomic force microscopy studies of conductive nanostructures in solid polymer electrolytes , 2013 .

[17]  W. Tang,et al.  The effects of operating temperature on current density distribution and impedance spectroscopy by segmented fuel cell , 2013 .

[18]  T. Zawodzinski,et al.  Ionic conductivity and glass transition of phosphoric acids. , 2013, The journal of physical chemistry. B.

[19]  O. Sicardy,et al.  Study by electron microscopy of proton exchange membrane fuel cell membrane-electrode assembly degradation mechanisms: Influence of local conditions , 2012 .

[20]  C. Hebling,et al.  Effect of operating conditions on current density distribution and high frequency resistance in a segmented PEM fuel cell , 2012 .

[21]  H. Takenaka,et al.  Properties of Nafion membranes under PEM water electrolysis conditions , 2011 .

[22]  Michael Eikerling,et al.  Poroelectroelastic theory of water sorption and swelling in polymer electrolyte membranes , 2011 .

[23]  S. Specchia,et al.  Estimation of hydrogen crossover through Nafion® membranes in PEMFCs , 2011 .

[24]  K. Friedrich,et al.  Investigation of Membrane Pinhole Effects in Polymer Electrolyte Fuel Cells by Locally Resolved Current Density , 2011 .

[25]  Mathias Schulze,et al.  A review of platinum-based catalyst layer degradation in proton exchange membrane fuel cells , 2009 .

[26]  Bing Li,et al.  Investigation of dynamic driving cycle effect on performance degradation and micro-structure change of PEM fuel cell , 2009 .

[27]  John W. Weidner,et al.  Hydrogen Peroxide Formation Rates in a PEMFC Anode and Cathode Effect of Humidity and Temperature , 2020, 2002.09476.

[28]  Daoxi Li,et al.  Ex situ investigation of the proton exchange membrane chemical decomposition , 2008 .

[29]  Mathias Schulze,et al.  Segmented cells as tool for development of fuel cells and error prevention/prediagnostic in fuel cell stacks , 2007 .

[30]  M. Watanabe,et al.  Distribution profile of hydrogen and oxygen permeating in polymer electrolyte membrane measured by mixed potential , 2007 .

[31]  A. Wokaun,et al.  Effect of inert gas flow on hydrogen underpotential deposition measurements in polymer electrolyte fuel cells , 2007 .

[32]  Xuan Cheng,et al.  Hydrogen crossover in high-temperature PEM fuel cells , 2007 .

[33]  M. Cetron,et al.  Biodiesel production : a preliminary study from Jatropha Curcas , 2013 .

[34]  Yanghua Tang,et al.  PEM fuel cell open circuit voltage (OCV) in the temperature range of 23 °C to 120 °C , 2006 .

[35]  George C. Schatz,et al.  Journal of Physical Chemistry B: Editorial , 2006 .

[36]  Minoru Inaba,et al.  Durability of perfluorinated ionomer membrane against hydrogen peroxide , 2006 .

[37]  Minoru Inaba,et al.  Gas crossover and membrane degradation in polymer electrolyte fuel cells , 2006 .

[38]  S. Kocha,et al.  Characterization of gas crossover and its implications in PEM fuel cells , 2006 .

[39]  George C. Schatz,et al.  Journal of Physical Chemistry A: Editorial , 2006 .

[40]  Stephen J. Paddison,et al.  Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes , 2003 .

[41]  David R. Clarke,et al.  Annual review of materials research , 2001 .

[42]  J. Hinatsu,et al.  Water Uptake of Perfluorosulfonic Acid Membranes from Liquid Water and Water Vapor , 1994 .

[43]  T. Springer,et al.  Water Uptake by and Transport Through Nafion® 117 Membranes , 1993 .

[44]  R. Huggins Solid State Ionics , 1989 .

[45]  C. E. Rogers,et al.  Permeation of Gases and Vapours in Polymers , 1985 .

[46]  R. Duplessix,et al.  Phase separation in perfluorosulfonate ionomer membranes , 1982 .

[47]  R. Williams,et al.  Journal of American Chemical Society , 1979 .

[48]  F. Conceição,et al.  PEDOT-AuNPs-based impedimetric immunosensor for the detection of SARS-CoV-2 antibodies , 2021, Electrochimica Acta.