Model Migration Schedules: Three Alternative Linear Parameter Estimation Methods

ABSTRACT Observed schedules of migration rates exhibit strong regularities in age patterns. These regularities may be captured and represented by a mathematical expression known as the multiexponential model migration schedule. Fitting this function to empirical data requires non-linear regression methods and often some experimentation with alternative initial estimates of the parameters. Simpler, linear methods of estimation are adequate for most applications. These may be carried out with hand calculators or simple spreadsheet-based calculations on the computer. Such methods are studied and appear to perform satisfactorily.

[1]  アジア経済研究所,et al.  Migration rates by age group and migration patterns : application of Rogers' Migration schedule model to Japan, the Republic of Korea and Thailand = 年齢別人口移動統計と移動パターン : 日本、韓国、タイにおけるロジャースモデルの適用 , 1990 .

[2]  J Bates,et al.  Estimation of Migration Profiles in England and Wales , 1982, Environment & planning A.

[3]  Andrei Rogers,et al.  Model migration schedules , 1981 .

[4]  T. Kuroda,et al.  Migration and Settlement: 13. Japan , 1982 .

[5]  Andrei Rogers,et al.  Fitting Observed Demographic Rates with the Multiexponential Model Schedule: An Assessment of Two Estimation Programs , 1999 .

[6]  Salahudin Muhidin,et al.  The population of Indonesia : Regional demographic scenarios using a multiregional method and multiple data sources , 2002 .

[7]  A. Potrykowska Age patterns and model migration schedules in Poland. , 1988, Geographia Polonica.

[8]  A Rogers,et al.  Parameterizing age patterns of demographic rates with the multiexponential model schedule. , 1994, Mathematical population studies.

[9]  K. Liaw,et al.  Characterization of metropolitan and nonmetropolitan outmigration schedules of the Canadian population system, 1971-1976 , 1985 .

[10]  Heather Booth,et al.  Demographic forecasting: 1980 to 2005 in review , 2006 .

[11]  Andrei Rogers,et al.  Model migration schedules: a simplified formulation and an alternative parameter estimation method. , 1981 .

[12]  J. Trussell,et al.  Maximum likelihood estimation of the parameters of Coale's model nuptiality schedule from survey data , 1980 .

[13]  Hofmeyr Be Application of a mathematical model to South African migration data, 1975-1980. , 1988 .

[14]  Andrei Rogers,et al.  General Versus Elderly Interstate Migration and Population Redistribution in the United States , 1987, Research on aging.

[15]  L. J. Castro,et al.  What the age composition of migrants can tell us. , 1983, Population bulletin of the United Nations.

[16]  D. Ewbank,et al.  Manual X: Indirect Techniques for Demographic Estimation , 1985 .

[17]  J. Perreault,et al.  Population projections for Canada provinces and territories 1989-2011. , 1985 .

[18]  B. Hofmeyr Application of a mathematical model to South African migration data, 1975-1980. , 1988, Southern African journal of demography = Suidelike Afrikaanse tydskrif vir demografie.