Low-order scaling local electron correlation methods. IV. Linear scaling local coupled-cluster (LCCSD)

A new implementation of local coupled-cluster theory with single and double excitations (LCCSD) is presented for which asymptotically all computational resources (CPU, memory, and disk) scale only linearly with the molecular size. This is achieved by: (i) restricting the correlation space for each electron pair to domains that are independent of molecular size; (ii) classifying the pairs according to a distance criterion and treating only strong pairs at the highest level; (iii) using efficient prescreening algorithms in the integral transformation and other integral-direct procedures; and (iv) neglect of small couplings of electron pairs that are far apart from each other. The errors caused by the various approximations are negligible. LCCSD calculations on molecules including up to 300 correlated electrons and over 1000 basis functions in C1 symmetry are reported, all carried out on a workstation.

[1]  G. Stollhoff,et al.  Electronic correlations in polyethylene , 1989 .

[2]  P. Otto,et al.  Intermolecular and intramolecular interactions calculated with ab initio perturbative configuration interaction method using strongly localized orbitals , 1982 .

[3]  Christian Ochsenfeld,et al.  Linear and sublinear scaling formation of Hartree-Fock-type exchange matrices , 1998 .

[4]  Stollhoff,et al.  Correlated ground state of diamond reexamined. , 1988, Physical review. B, Condensed matter.

[5]  Hans-Joachim Werner,et al.  Local perturbative triples correction (T) with linear cost scaling , 2000 .

[6]  M. Zerner,et al.  A constant denominator perturbation theory for molecular energy , 1982 .

[7]  W. Kutzelnigg,et al.  Møller-plesset calculations taking care of the correlation CUSP , 1987 .

[8]  Martin Schütz,et al.  Low-order scaling local electron correlation methods. III. Linear scaling local perturbative triples correction (T) , 2000 .

[9]  F. Bartha,et al.  Applications of the many-body perturbation theory in the localized representation: structural effects in the correlation energy of normal saturated hyd , 1991 .

[10]  Klaus Ruedenberg,et al.  Localized Atomic and Molecular Orbitals. II , 1965 .

[11]  Joseph G. Hoffman,et al.  Quantum Theory of Atoms, Molecules and the Solid State: A Tribute to John C. Slater , 1967 .

[12]  Werner Kutzelnigg,et al.  Direct Calculation of Approximate Natural Orbitals and Natural Expansion Coefficients of Atomic and Molecular Electronic Wavefunctions. II. Decoupling of the Pair Equations and Calculation of the Pair Correlation Energies for the Be and LiH Ground States , 1968 .

[13]  C. Kozmutza,et al.  Calculation of the dispersion interaction energy by using localized molecular orbitals , 1991 .

[14]  Philippe Y. Ayala,et al.  Linear scaling second-order Moller–Plesset theory in the atomic orbital basis for large molecular systems , 1999 .

[15]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[16]  Local and long-range correlation in extended systems , 1986 .

[17]  Paul G. Mezey,et al.  A fast intrinsic localization procedure applicable for ab initio and semiempirical linear combination of atomic orbital wave functions , 1989 .

[18]  Yixiang Cao,et al.  Correlated ab Initio Electronic Structure Calculations for Large Molecules , 1999 .

[19]  Hermann Stoll,et al.  Electron correlations in the ground state of diamond , 1982 .

[20]  P Pulay,et al.  Local Treatment of Electron Correlation , 1993 .

[21]  Benny G. Johnson,et al.  Linear scaling density functional calculations via the continuous fast multipole method , 1996 .

[22]  Wim Klopper,et al.  Wave functions with terms linear in the interelectronic coordinates to take care of the correlation cusp. I. General theory , 1991 .

[23]  F. Bartha,et al.  Applications of the MBPT in the localized representation , 1990 .

[24]  T. Dziembowska,et al.  Infrared and Raman investigation of the liquid addition compounds BF3-CH3OH and BF3-2CH3OH , 1978 .

[25]  F. Bartha,et al.  The study of normal saturated hydrocarbons in the localized representation of the MBPT , 1988 .

[26]  C. Kozmutza,et al.  Counterpoise corrected calculations at the correlated level: A simplified method using LMOs , 1991 .

[27]  C. Kozmutza,et al.  Localized orbitals for the description of molecular interaction , 1990 .

[28]  J. P. Malrieu,et al.  Localization and Delocalization in Quantum Chemistry , 1975 .

[29]  Peter Pulay,et al.  An efficient reformulation of the closed‐shell self‐consistent electron pair theory , 1984 .

[30]  Benny G. Johnson,et al.  THE CONTINUOUS FAST MULTIPOLE METHOD , 1994 .

[31]  J. P. Malrieu,et al.  Commentationes Localized Bond Orbitals and the Correlation Problem I. The Perturbation Calculation of the Ground State Energy , 1969 .

[32]  Peter Pulay,et al.  Local configuration interaction: An efficient approach for larger molecules , 1985 .

[33]  P. Vasilopoulos,et al.  The local approach: Electronic correlations in small hydrocarbon molecules , 1986 .

[34]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[35]  Wim Klopper,et al.  Orbital-invariant formulation of the MP2-R12 method , 1991 .

[36]  Peter Pulay,et al.  Efficient elimination of basis set superposition errors by the local correlation method: Accurate ab initio studies of the water dimer , 1993 .

[37]  F. Bartha,et al.  Application of the many-body perturbation theory to normal saturated hydrocarbons in the localized representation , 1987 .

[38]  T. Martínez,et al.  LOCAL WEAK PAIRS SPECTRAL AND PSEUDOSPECTRAL SINGLES AND DOUBLES CONFIGURATION INTERACTION , 1996 .

[39]  Roland Lindh,et al.  Integral-direct electron correlation methods , 1999 .

[40]  B. Kirtman,et al.  Density matrix treatment of localized electronic interactions in molecules and solids , 1981 .

[41]  Michael C. Zerner,et al.  The linked singles and doubles model: An approximate theory of electron correlation based on the coupled‐cluster ansatz , 1982 .

[42]  C. Kozmutza,et al.  Application of the many‐body perturbation theory by using localized orbitals , 1983 .

[43]  Georg Hetzer,et al.  Multipole approximation of distant pair energies in local MP2 calculations , 1998 .

[44]  J. G. Zabolitzky,et al.  Atomic and molecular correlation energies with explicitly correlated Gaussian geminals. I. Second‐order perturbation treatment for He, Be, H2, and LiH , 1983 .

[45]  R. Lindh,et al.  On the significance of the trigger reaction in the action of the calicheamicin γ1I anti-cancer drug , 1997 .

[46]  Martin Head-Gordon,et al.  Non-iterative local second order Møller–Plesset theory , 1998 .

[47]  Peter Fulde,et al.  On the computation of electronic correlation energies within the local approach , 1980 .

[48]  Georg Hetzer,et al.  Low-order scaling local correlation methods II: Splitting the Coulomb operator in linear scaling local second-order Møller–Plesset perturbation theory , 2000 .

[49]  Peter Pulay,et al.  The local correlation treatment. II. Implementation and tests , 1988 .

[50]  M. Schütz,et al.  The aurophilic attraction as interpreted by local correlation methods , 1999 .

[51]  Guntram Rauhut,et al.  Integral transformation with low‐order scaling for large local second‐order Møller–Plesset calculations , 1998 .

[52]  Georg Hetzer,et al.  Low-order scaling local electron correlation methods. I. Linear scaling local MP2 , 1999 .

[53]  Philippe Y. Ayala,et al.  Linear scaling coupled cluster and perturbation theories in the atomic orbital basis , 1999 .

[54]  P. Taylor,et al.  Accurate quantum‐chemical calculations: The use of Gaussian‐type geminal functions in the treatment of electron correlation , 1996 .

[55]  B. Kirtman Molecular electronic structure by combination of fragments , 1982 .

[56]  B. Kirtman,et al.  Local space approximation for configuration interaction and coupled cluster wave functions , 1986 .

[57]  Martin Head-Gordon,et al.  Closely approximating second-order Mo/ller–Plesset perturbation theory with a local triatomics in molecules model , 2000 .

[58]  Werner Kutzelnigg,et al.  Localization and Correlation , 1975 .

[59]  Jürgen Gauss,et al.  NMR chemical shift calculations within local correlation methods: the GIAO-LMP2 approach , 2000 .

[60]  R. Bartlett,et al.  Can simple localized bond orbitals and coupled cluster methods predict reliable molecular energies , 1985 .

[61]  Martin Head-Gordon,et al.  Noniterative local second order Mo/ller–Plesset theory: Convergence with local correlation space , 1998 .

[62]  Martin Head-Gordon,et al.  A tensor formulation of many-electron theory in a nonorthogonal single-particle basis , 1998 .

[63]  Stollhoff,et al.  Why polyacetylene dimerizes: Results of ab initio computations. , 1990, Physical review letters.

[64]  Hans-Joachim Werner,et al.  A comparison of the efficiency and accuracy of the quadratic configuration interaction (QCISD), coupled cluster (CCSD), and Brueckner coupled cluster (BCCD) methods , 1992 .

[65]  Wilfried Meyer,et al.  Theory of self‐consistent electron pairs. An iterative method for correlated many‐electron wavefunctions , 1976 .

[66]  Josef Paldus,et al.  Coupled-cluster approach to electron correlation in one dimension. II. Cyclic polyene model in localized basis , 1984 .

[67]  W. Kutzelnigg,et al.  Ab initio calculations on small hydrides including electron correlation , 1968 .

[68]  Janos Ladik,et al.  Coupled-cluster studies. II. The role of localization in correlation calculations on extended systems , 1985 .

[69]  Peter Pulay,et al.  Comparison of the boys and Pipek–Mezey localizations in the local correlation approach and automatic virtual basis selection , 1993, J. Comput. Chem..

[70]  Michael J. Frisch,et al.  Achieving Linear Scaling for the Electronic Quantum Coulomb Problem , 1996, Science.

[71]  Rodney J. Bartlett,et al.  SCF and localized orbitals in ethylene: MBPT/CC results and comparison with one-million configuration Cl☆ , 1983 .

[72]  J. Paldus,et al.  Bond length alternation in cyclic polyenes. VI. Coupled cluster approach with wannier orbital basis , 1985 .

[73]  Peter Pulay,et al.  Localizability of dynamic electron correlation , 1983 .

[74]  James G. Anderson,et al.  Reactions of radicals with halogen molecules: a frontier orbital interpretation , 1987 .

[75]  Hans-Joachim Werner,et al.  Local treatment of electron correlation in coupled cluster theory , 1996 .

[76]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[77]  Guntram Rauhut,et al.  Analytical energy gradients for local second-order Mo/ller–Plesset perturbation theory , 1998 .

[78]  Guntram Rauhut,et al.  Local Treatment of Electron Correlation in Molecular Clusters: Structures and Stabilities of (H2O)n, n = 2−4 , 1998 .

[79]  M. Head‐Gordon,et al.  An accurate local model for triple substitutions in fourth order Møller–Plesset theory and in perturbative corrections to singles and doubles coupled cluster methods , 2000 .