Numerical representations of binary relations with thresholds : A brief survey 1
暂无分享,去创建一个
[1] G. Cantor. Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .
[2] C. J. Keyser. Contributions to the Founding of the Theory of Transfinite Numbers , 1916 .
[3] E. Szpilrajn. Sur l'extension de l'ordre partiel , 1930 .
[4] S. Eilenberg. Ordered Topological Spaces , 1941 .
[5] Ben Dushnik,et al. Partially Ordered Sets , 1941 .
[6] Patrick Suppes,et al. Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.
[7] J. Chipman. The Foundations of Utility , 1960 .
[8] G. Debreu. ON THE CONTINUITY PROPERTIES OF PARETIAN UTILITY , 1963 .
[9] E. W. Adams,et al. Elements of a Theory of Inexact Measurement , 1965, Philosophy of Science.
[10] M. Richter. Revealed Preference Theory , 1966 .
[11] D. Krantz. Extensive Measurement in Semiorders , 1967, Philosophy of Science.
[12] Peter C. Fishburn,et al. Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..
[13] B. Peleg. UTILITY FUNCTIONS FOR PARTIALLY ORDERED TOPOLOGICAL SPACES. , 1970 .
[14] P. Fishburn. Suborders on commodity spaces , 1970 .
[15] Peter C. Fishburn,et al. Utility theory for decision making , 1970 .
[16] A. Sen,et al. Collective Choice and Social Welfare , 2017 .
[17] P. Fishburn. Intransitive indifference with unequal indifference intervals , 1970 .
[18] K. Arrow,et al. General Competitive Analysis , 1971 .
[19] Zoltan Domotor,et al. Representation of finitely additive semiordered qualitative probability structures , 1971 .
[20] P. Fishburn. Interval representations for interval orders and semiorders , 1973 .
[21] R. Luce. Three Axiom Systems for Additive Semiordered Structures , 1973 .
[22] T. Bergstrom. Maximal elements of Acyclic Relations on Compact Sets , 1975 .
[23] J. Munkres. Topology : a first course / James R. Munkres , 1975 .
[24] J. Jaffray. Semicontinuous extension of a partial order , 1975 .
[25] J. Jaffray. Existence of a Continuous Utility Function: An Elementary Proof , 1975 .
[26] B. Monjardet. Axiomatiques et propri?et?es des quasi-ordres , 1978 .
[27] D. Sondermann. Utility representations for partial orders , 1980 .
[28] P. Swistak. Some representation problems for semiorders , 1980 .
[29] P. Vincke. LINEAR UTILITY FUNCTIONS ON SEMIORDERED MIXTURE SPACES , 1980 .
[30] Kenneth L. Manders. On jnd representations of semiorders , 1981 .
[31] D. Bridges. Numerical representation of intransitive preferences on a countable set , 1983 .
[32] K. Suzumura. Rational choice, collective decisions, and social welfare: Notes , 1983 .
[33] G. Debreu. Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .
[34] D. Bridges. A numerical representation of preferences with intransitive indifference , 1983 .
[35] Jean-Paul Doignon,et al. On realizable biorders and the biorder dimension of a relation , 1984 .
[36] B. Roy. Méthodologie multicritère d'aide à la décision , 1985 .
[37] D. Bridges. Representing interval orders by a single real-valued function , 1985 .
[38] Peter C. Fishburn,et al. Interval graphs and interval orders , 1985, Discret. Math..
[39] D. Bridges. Numerical representation of interval orders on a topological space , 1986 .
[40] P. Fishburn. Interval models of comparative probability on finite sets , 1986 .
[41] A. Chateauneuf. Continuous representation of a preference relation on a connected topological space , 1987 .
[42] S. Gensemer. Continuous semiorder representations , 1987 .
[43] S. Gensemer. On relationships between numerical representations of interval orders and semiorders , 1987 .
[44] Yutaka Nakamura. Expected utility with an interval ordered structure , 1988 .
[45] S. Gensemer. On numerical representations of semiorders , 1988 .
[46] Patrick Suppes,et al. Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations , 1989 .
[47] G. Herden. On the existence of utility functions ii , 1989 .
[48] Peter C. Fishbur. A general axiomatization of additive measurement with applications , 1992 .
[49] I. Gilboa,et al. Numerical representations of imperfectly ordered preferences (a unified geometric exposition) , 1992 .
[50] R. Agaev,et al. Interval choice: classic and general cases , 1993 .
[51] P. Vincke,et al. Preference structures and threshold models , 1993 .
[52] Jianxin Zhou. Extension of the Zorn lemma to general nontransitive binary relations , 1994 .
[53] L. Narens. The measurement theory of dense threshold structures , 1994 .
[54] Begoña Subiza. NUMERICAL REPRESENTATION OF ACYCLIC PREFERENCES , 1994 .
[55] Moncef Abbas. Any complete preference structure without circuit admits an interval representation , 1995 .
[56] D. Bridges,et al. Representations of Preferences Orderings , 1995 .
[57] Javier García-Cutrín,et al. A note on the representation of preferences , 1995 .
[58] G. Bosi,et al. Representing preferences with nontransitive indifference by a single real-valued function☆ , 1995 .
[59] Jianxin Zhou,et al. Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization , 1995 .
[60] Josep E. Peris,et al. A weak utility function for acyclic preferences , 1995 .
[61] C. Horvath,et al. Maximal elements and fixed points for binary relations on topological ordered spaces , 1996 .
[62] K. Nehring. Maximal elements of non-binary choice functions on compact sets , 1996 .
[63] C. Rodríguez-Palmero. A representation of acyclic preferences , 1997 .
[64] P. Fishburn. Cancellation Conditions for Multiattribute Preferences on Finite Sets , 1997 .
[65] Philippe Vincke,et al. Semiorders - Properties, Representations, Applications , 1997, Theory and decision library: series B.
[66] Josep E. Peris,et al. Numerical representation for lower quasi-continuous preferences , 1997 .
[67] Jean-François Laslier,et al. Tournament Solutions And Majority Voting , 1997 .
[68] V. Knoblauch. Order isomorphisms for preferences with intransitive indifference , 1998 .
[69] Unified treatment of the problem of existence of maximal elements in binary relations: a characterization , 1998 .
[70] E. Induráin,et al. Representability of Interval Orders , 1998 .
[71] G. Mehta. Preference and utility , 1998 .
[72] J. Llinares,et al. Non-binary choice functions on non-compact sets , 1999 .
[73] Herrero,et al. Set-Valued Utilities for Strict Partial Orders. , 1999, Journal of mathematical psychology.
[74] J. Alcantud. Weak utilities from acyclicity , 1999 .
[75] Peter C. Fishburn,et al. Preference Structures and Their Numerical Representations , 1999, Theor. Comput. Sci..
[76] Nakamura. Threshold Models for Comparative Probability on Finite Sets. , 2000, Journal of mathematical psychology.
[77] Juan Carlos Candeal,et al. Numerical Representations of Interval Orders , 2001, Order.
[78] Yutaka Nakamura. Real interval representations , 2002 .
[79] Yutaka Nakamura. Semimetric thresholds for finite posets , 2002, Math. Soc. Sci..
[80] Juan Carlos Candeal,et al. Numerical representability of semiorders , 2002, Math. Soc. Sci..
[81] D. Bouyssou,et al. Utility Maximization, Choice and Preference , 2002 .
[82] A. Beardon,et al. Lexicographic decomposition of chains and the concept of a planar chain , 2002 .
[83] G. Bosi. Semicontinuous Representability of Homothetic Interval Orders by Means of Two Homogeneous Functionals , 2002 .
[84] D. Bouyssou,et al. Nontransitive decomposable conjoint measurement , 2002 .
[85] Efe A. Ok. Utility Representation of an Incomplete Preference Relation , 2002, J. Econ. Theory.
[86] A. Beardon,et al. The non-existence of a utility function and the structure of non-representable preference relations , 2002 .
[87] Begoña Subiza,et al. A KKM-result and an application for binary and non-binary choice functions , 2003 .
[88] Alexis Tsoukiàs,et al. Preference Modelling , 2004, Preferences.
[89] Paola Manzini,et al. How vague can one be? Rational preferences without completeness or transitivity , 2004 .
[90] E. Induráin,et al. Continuous representability of interval orders , 2004 .
[91] M. Menestrel,et al. Biased extensive measurement: The homogeneous case , 2004 .
[92] D. Bouyssou,et al. Preferences for multi-attributed alternatives: Traces, dominance, and numerical representations , 2004 .
[93] Uwe Luck. Representing Interval Orders by Arbitrary Real Intervals , 2004 .
[94] Juan Carlos Candeal,et al. Existence of homogeneous representations of interval orders on a cone in a topological vector space , 2005, Soc. Choice Welf..
[95] D. Bouyssoua,et al. ‘ Additive difference ’ models without additivity and subtractivity $ , 2022 .