Numerical representations of binary relations with thresholds : A brief survey 1

This purpose of this text is to present in a self-contained way a number of classical results on the numerical representation of binary relations on arbitrary sets involving a threshold. We tackle the case of linear orders, weak orders, biorders, interval orders, semiorders and acyclic relations.

[1]  G. Cantor Beiträge zur Begründung der transfiniten Mengenlehre , 1897 .

[2]  C. J. Keyser Contributions to the Founding of the Theory of Transfinite Numbers , 1916 .

[3]  E. Szpilrajn Sur l'extension de l'ordre partiel , 1930 .

[4]  S. Eilenberg Ordered Topological Spaces , 1941 .

[5]  Ben Dushnik,et al.  Partially Ordered Sets , 1941 .

[6]  Patrick Suppes,et al.  Foundational aspects of theories of measurement , 1958, Journal of Symbolic Logic.

[7]  J. Chipman The Foundations of Utility , 1960 .

[8]  G. Debreu ON THE CONTINUITY PROPERTIES OF PARETIAN UTILITY , 1963 .

[9]  E. W. Adams,et al.  Elements of a Theory of Inexact Measurement , 1965, Philosophy of Science.

[10]  M. Richter Revealed Preference Theory , 1966 .

[11]  D. Krantz Extensive Measurement in Semiorders , 1967, Philosophy of Science.

[12]  Peter C. Fishburn,et al.  Intransitive Indifference in Preference Theory: A Survey , 1970, Oper. Res..

[13]  B. Peleg UTILITY FUNCTIONS FOR PARTIALLY ORDERED TOPOLOGICAL SPACES. , 1970 .

[14]  P. Fishburn Suborders on commodity spaces , 1970 .

[15]  Peter C. Fishburn,et al.  Utility theory for decision making , 1970 .

[16]  A. Sen,et al.  Collective Choice and Social Welfare , 2017 .

[17]  P. Fishburn Intransitive indifference with unequal indifference intervals , 1970 .

[18]  K. Arrow,et al.  General Competitive Analysis , 1971 .

[19]  Zoltan Domotor,et al.  Representation of finitely additive semiordered qualitative probability structures , 1971 .

[20]  P. Fishburn Interval representations for interval orders and semiorders , 1973 .

[21]  R. Luce Three Axiom Systems for Additive Semiordered Structures , 1973 .

[22]  T. Bergstrom Maximal elements of Acyclic Relations on Compact Sets , 1975 .

[23]  J. Munkres Topology : a first course / James R. Munkres , 1975 .

[24]  J. Jaffray Semicontinuous extension of a partial order , 1975 .

[25]  J. Jaffray Existence of a Continuous Utility Function: An Elementary Proof , 1975 .

[26]  B. Monjardet Axiomatiques et propri?et?es des quasi-ordres , 1978 .

[27]  D. Sondermann Utility representations for partial orders , 1980 .

[28]  P. Swistak Some representation problems for semiorders , 1980 .

[29]  P. Vincke LINEAR UTILITY FUNCTIONS ON SEMIORDERED MIXTURE SPACES , 1980 .

[30]  Kenneth L. Manders On jnd representations of semiorders , 1981 .

[31]  D. Bridges Numerical representation of intransitive preferences on a countable set , 1983 .

[32]  K. Suzumura Rational choice, collective decisions, and social welfare: Notes , 1983 .

[33]  G. Debreu Mathematical Economics: Representation of a preference ordering by a numerical function , 1983 .

[34]  D. Bridges A numerical representation of preferences with intransitive indifference , 1983 .

[35]  Jean-Paul Doignon,et al.  On realizable biorders and the biorder dimension of a relation , 1984 .

[36]  B. Roy Méthodologie multicritère d'aide à la décision , 1985 .

[37]  D. Bridges Representing interval orders by a single real-valued function , 1985 .

[38]  Peter C. Fishburn,et al.  Interval graphs and interval orders , 1985, Discret. Math..

[39]  D. Bridges Numerical representation of interval orders on a topological space , 1986 .

[40]  P. Fishburn Interval models of comparative probability on finite sets , 1986 .

[41]  A. Chateauneuf Continuous representation of a preference relation on a connected topological space , 1987 .

[42]  S. Gensemer Continuous semiorder representations , 1987 .

[43]  S. Gensemer On relationships between numerical representations of interval orders and semiorders , 1987 .

[44]  Yutaka Nakamura Expected utility with an interval ordered structure , 1988 .

[45]  S. Gensemer On numerical representations of semiorders , 1988 .

[46]  Patrick Suppes,et al.  Foundations of Measurement, Vol. II: Geometrical, Threshold, and Probabilistic Representations , 1989 .

[47]  G. Herden On the existence of utility functions ii , 1989 .

[48]  Peter C. Fishbur A general axiomatization of additive measurement with applications , 1992 .

[49]  I. Gilboa,et al.  Numerical representations of imperfectly ordered preferences (a unified geometric exposition) , 1992 .

[50]  R. Agaev,et al.  Interval choice: classic and general cases , 1993 .

[51]  P. Vincke,et al.  Preference structures and threshold models , 1993 .

[52]  Jianxin Zhou Extension of the Zorn lemma to general nontransitive binary relations , 1994 .

[53]  L. Narens The measurement theory of dense threshold structures , 1994 .

[54]  Begoña Subiza NUMERICAL REPRESENTATION OF ACYCLIC PREFERENCES , 1994 .

[55]  Moncef Abbas Any complete preference structure without circuit admits an interval representation , 1995 .

[56]  D. Bridges,et al.  Representations of Preferences Orderings , 1995 .

[57]  Javier García-Cutrín,et al.  A note on the representation of preferences , 1995 .

[58]  G. Bosi,et al.  Representing preferences with nontransitive indifference by a single real-valued function☆ , 1995 .

[59]  Jianxin Zhou,et al.  Transfer continuities, generalizations of the Weierstrass and maximum theorems: A full characterization , 1995 .

[60]  Josep E. Peris,et al.  A weak utility function for acyclic preferences , 1995 .

[61]  C. Horvath,et al.  Maximal elements and fixed points for binary relations on topological ordered spaces , 1996 .

[62]  K. Nehring Maximal elements of non-binary choice functions on compact sets , 1996 .

[63]  C. Rodríguez-Palmero A representation of acyclic preferences , 1997 .

[64]  P. Fishburn Cancellation Conditions for Multiattribute Preferences on Finite Sets , 1997 .

[65]  Philippe Vincke,et al.  Semiorders - Properties, Representations, Applications , 1997, Theory and decision library: series B.

[66]  Josep E. Peris,et al.  Numerical representation for lower quasi-continuous preferences , 1997 .

[67]  Jean-François Laslier,et al.  Tournament Solutions And Majority Voting , 1997 .

[68]  V. Knoblauch Order isomorphisms for preferences with intransitive indifference , 1998 .

[69]  Unified treatment of the problem of existence of maximal elements in binary relations: a characterization , 1998 .

[70]  E. Induráin,et al.  Representability of Interval Orders , 1998 .

[71]  G. Mehta Preference and utility , 1998 .

[72]  J. Llinares,et al.  Non-binary choice functions on non-compact sets , 1999 .

[73]  Herrero,et al.  Set-Valued Utilities for Strict Partial Orders. , 1999, Journal of mathematical psychology.

[74]  J. Alcantud Weak utilities from acyclicity , 1999 .

[75]  Peter C. Fishburn,et al.  Preference Structures and Their Numerical Representations , 1999, Theor. Comput. Sci..

[76]  Nakamura Threshold Models for Comparative Probability on Finite Sets. , 2000, Journal of mathematical psychology.

[77]  Juan Carlos Candeal,et al.  Numerical Representations of Interval Orders , 2001, Order.

[78]  Yutaka Nakamura Real interval representations , 2002 .

[79]  Yutaka Nakamura Semimetric thresholds for finite posets , 2002, Math. Soc. Sci..

[80]  Juan Carlos Candeal,et al.  Numerical representability of semiorders , 2002, Math. Soc. Sci..

[81]  D. Bouyssou,et al.  Utility Maximization, Choice and Preference , 2002 .

[82]  A. Beardon,et al.  Lexicographic decomposition of chains and the concept of a planar chain , 2002 .

[83]  G. Bosi Semicontinuous Representability of Homothetic Interval Orders by Means of Two Homogeneous Functionals , 2002 .

[84]  D. Bouyssou,et al.  Nontransitive decomposable conjoint measurement , 2002 .

[85]  Efe A. Ok Utility Representation of an Incomplete Preference Relation , 2002, J. Econ. Theory.

[86]  A. Beardon,et al.  The non-existence of a utility function and the structure of non-representable preference relations , 2002 .

[87]  Begoña Subiza,et al.  A KKM-result and an application for binary and non-binary choice functions , 2003 .

[88]  Alexis Tsoukiàs,et al.  Preference Modelling , 2004, Preferences.

[89]  Paola Manzini,et al.  How vague can one be? Rational preferences without completeness or transitivity , 2004 .

[90]  E. Induráin,et al.  Continuous representability of interval orders , 2004 .

[91]  M. Menestrel,et al.  Biased extensive measurement: The homogeneous case , 2004 .

[92]  D. Bouyssou,et al.  Preferences for multi-attributed alternatives: Traces, dominance, and numerical representations , 2004 .

[93]  Uwe Luck Representing Interval Orders by Arbitrary Real Intervals , 2004 .

[94]  Juan Carlos Candeal,et al.  Existence of homogeneous representations of interval orders on a cone in a topological vector space , 2005, Soc. Choice Welf..

[95]  D. Bouyssoua,et al.  ‘ Additive difference ’ models without additivity and subtractivity $ , 2022 .