Verification for Timed Automata Extended with Unbounded Discrete Data Structures

We study decidability of verification problems for timed automata extended with unbounded discrete data structures. More detailed, we extend timed automata with a pushdown stack. In this way, we obtain a strong model that may for instance be used to model real-time programs with procedure calls. It is long known that the reachability problem for this model is decidable. The goal of this paper is to identify subclasses of timed pushdown automata for which the language inclusion problem and related problems are decidable.

[1]  J. P. Ed,et al.  Transmission control protocol- darpa internet program protocol specification , 1981 .

[2]  Graham Higman,et al.  Ordering by Divisibility in Abstract Algebras , 1952 .

[3]  Mahesh Viswanathan,et al.  Decidability Results for Well-Structured Transition Systems with Auxiliary Storage , 2007, CONCUR.

[4]  Kim G. Larsen,et al.  Infinite Runs in Weighted Timed Automata with Energy Constraints , 2008, FORMATS.

[5]  Rajeev Alur,et al.  A Theory of Timed Automata , 1994, Theor. Comput. Sci..

[6]  Parosh Aziz Abdulla,et al.  Model checking of systems with many identical timed processes , 2003, Theor. Comput. Sci..

[7]  Rajeev Alur,et al.  Visibly pushdown languages , 2004, STOC '04.

[8]  Joël Ouaknine,et al.  On the language inclusion problem for timed automata: closing a decidability gap , 2004, Proceedings of the 19th Annual IEEE Symposium on Logic in Computer Science, 2004..

[9]  Kim G. Larsen,et al.  Lower-Bound Constrained Runs in Weighted Timed Automata , 2012, 2012 Ninth International Conference on Quantitative Evaluation of Systems.

[10]  Parosh Aziz Abdulla,et al.  Simulation Is Decidable for One-Counter Nets (Extended Abstract) , 1998, CONCUR.

[11]  Stéphane Demri,et al.  Model Checking Freeze LTL over One-Counter Automata , 2008, FoSSaCS.

[12]  Patrick Totzke,et al.  Trace Inclusion for One-Counter Nets Revisited , 2014, RP.

[13]  Stéphane Demri,et al.  LTL with the Freeze Quantifier and Register Automata , 2006, 21st Annual IEEE Symposium on Logic in Computer Science (LICS'06).

[14]  Karin Quaas,et al.  On the Interval-Bound Problem for Weighted Timed Automata , 2011, LATA.

[15]  Satoshi Yamane,et al.  The symbolic model-checking for real-time systems , 1996, Proceedings of the Eighth Euromicro Workshop on Real-Time Systems.

[16]  Rupak Majumdar,et al.  Decision Problems for the Verification of Real-Time Software , 2006, HSCC.

[17]  Faron Moller,et al.  Petri Nets and Regular Processes , 1999, J. Comput. Syst. Sci..

[18]  Karin Quaas,et al.  Model Checking Metric Temporal Logic over Automata with One Counter , 2013, LATA.

[19]  Stéphane Demri,et al.  Model checking memoryful linear-time logics over one-counter automata , 2010, Theor. Comput. Sci..

[20]  Faron Moller,et al.  DP lower bounds for equivalence-checking and model-checking of one-counter automata , 2004, Inf. Comput..

[21]  Slawomir Lasota,et al.  Alternating timed automata , 2005, TOCL.

[22]  Oscar H. Ibarra,et al.  Restricted one-counter machines with undecidable universe problems , 1979, Mathematical systems theory.

[23]  Rajeev Alur,et al.  Decision Problems for Timed Automata: A Survey , 2004, SFM.

[24]  Philippe Schnoebelen,et al.  Verifying lossy channel systems has nonprimitive recursive complexity , 2002, Inf. Process. Lett..

[25]  Sheila A. Greibach,et al.  An Infinite Hierarchy of Context-Free Languages , 1967, JACM.

[26]  Kim G. Larsen,et al.  Energy Games in Multiweighted Automata , 2011, ICTAC.

[27]  Kim G. Larsen,et al.  Timed automata with observers under energy constraints , 2010, HSCC '10.

[28]  Axel Legay,et al.  Kleene Algebras and Semimodules for Energy Problems , 2013, ATVA.

[29]  Parosh Aziz Abdulla,et al.  Universality Analysis for One-Clock Timed Automata , 2009, Fundam. Informaticae.

[30]  Ahmed Bouajjani,et al.  On the Automatic Verification of Systems with Continuous Variables and Unbounded Discrete Data Structures , 1994, Hybrid Systems.

[31]  Tomás Brázdil,et al.  Reachability Games on Extended Vector Addition Systems with States , 2010, ICALP.

[32]  Alain Finkel,et al.  Reachability in Timed Counter Systems , 2009, INFINITY.

[33]  Zhe Dang,et al.  Pushdown timed automata: a binary reachability characterization and safety verification , 2001, Theor. Comput. Sci..

[34]  Slawomir Lasota,et al.  Simulation Over One-counter Nets is PSPACE-Complete , 2013, FSTTCS.

[35]  Joël Ouaknine,et al.  On Metric Temporal Logic and Faulty Turing Machines , 2006, FoSSaCS.

[36]  Daniel Brand,et al.  On Communicating Finite-State Machines , 1983, JACM.

[37]  L. Dickson Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors , 1913 .

[38]  Kim G. Larsen,et al.  Optimal Bounds for Multiweighted and Parametrised Energy Games , 2013, Theories of Programming and Formal Methods.

[39]  Karin Quaas,et al.  MTL-Model Checking of One-Clock Parametric Timed Automata is Undecidable , 2014, SynCoP.

[40]  Joël Ouaknine,et al.  On the decidability of metric temporal logic , 2005, 20th Annual IEEE Symposium on Logic in Computer Science (LICS' 05).

[41]  Joël Ouaknine,et al.  Undecidability of Universality for Timed Automata with Minimal Resources , 2007, FORMATS.

[42]  Karlis Cerans,et al.  Decidability of Bisimulation Equivalences for Parallel Timer Processes , 1992, CAV.