The Effect of Background Knowledge in Graph-Based Learning in the Chemoinformatics Domain

Typical machine learning systems often use a set of previous experiences (examples) to learn concepts, patterns, or relations hidden within the data [1]. Current machine learning approaches are cha ...

[1]  J CookDiane,et al.  Graph-based relational learning , 2003 .

[2]  Luc De Raedt,et al.  Inductive Logic Programming: Theory and Methods , 1994, J. Log. Program..

[3]  Charu C. Aggarwal,et al.  XRules: an effective structural classifier for XML data , 2003, KDD '03.

[4]  Lawrence B. Holder,et al.  Substructure Discovery Using Minimum Description Length and Background Knowledge , 1993, J. Artif. Intell. Res..

[5]  Hendrik Blockeel,et al.  Top-Down Induction of First Order Logical Decision Trees , 1998, AI Commun..

[6]  Jiawei Han,et al.  gSpan: graph-based substructure pattern mining , 2002, 2002 IEEE International Conference on Data Mining, 2002. Proceedings..

[7]  Henrik Boström,et al.  Learning from structured data by finger printing , 2006 .

[8]  Ashwin Srinivasan,et al.  ILP: A Short Look Back and a Longer Look Forward , 2003, J. Mach. Learn. Res..

[9]  Thorsten Meinl,et al.  Graph based molecular data mining - an overview , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[10]  Lawrence B. Holder,et al.  Graph-based relational learning: current and future directions , 2003, SKDD.

[11]  Lawrence B. Holder,et al.  Comparison of graph-based and logic-based multi-relational data mining , 2005, SKDD.

[12]  Ashwin Srinivasan,et al.  Carcinogenesis Predictions Using ILP , 1997, ILP.

[13]  Peter A. Flach,et al.  RSD: Relational Subgroup Discovery through First-Order Feature Construction , 2002, ILP.

[14]  A. Debnath,et al.  Structure-activity relationship of mutagenic aromatic and heteroaromatic nitro compounds. Correlation with molecular orbital energies and hydrophobicity. , 1991, Journal of medicinal chemistry.

[15]  Lawrence B. Holder,et al.  Application of Graph-Based Concept Learning to the Predictive Toxicology Domain , 2001 .

[16]  Hans-Peter Kriegel,et al.  Shortest-path kernels on graphs , 2005, Fifth IEEE International Conference on Data Mining (ICDM'05).

[17]  Stephen Muggleton,et al.  Bayesian inductive logic programming , 1994, COLT '94.

[18]  Ian H. Witten,et al.  Data mining: practical machine learning tools and techniques, 3rd Edition , 1999 .

[19]  Lawrence B. Holder,et al.  Qualitative comparison of graph-based and logic-based multi-relational data mining: a case study , 2005, MRDM '05.

[20]  Takashi Washio,et al.  State of the art of graph-based data mining , 2003, SKDD.

[21]  Stephen Muggleton,et al.  Inverse entailment and progol , 1995, New Generation Computing.

[22]  Ramakrishnan Srikant,et al.  Fast algorithms for mining association rules , 1998, VLDB 1998.

[23]  Peter A. Flach,et al.  IBC: A First-Order Bayesian Classifier , 1999, ILP.

[24]  Jan Ramon,et al.  Expressivity versus efficiency of graph kernels , 2003 .

[25]  Ian Witten,et al.  Data Mining , 2000 .