High-frequency nanophotonic devices

Recent results on GaAs-based high-speed mode-locked quantum dot (QD) lasers and optical amplifiers with an operation wavelength centered at 1290 nm are reviewed and their complex dependence on device and operating parameters is discussed on the basis of experimental data obtained with integrated fiber-based QD device modules. Hybrid and passive mode-locking of QD lasers with repetition frequencies between 5 and 80 GHz, sub-ps pulse widths, ultra-low timing jitter down to 190 fs, high output peak power beyond 1 W and suppression of Q-switching are reported, showing the large potential of this class of devices for O-band optical fiber applications. Results on cw and dynamical characterization of quantum dot semiconductor optical amplifiers are presented. QD amplifiers exhibit a close-to-ideal noise figure of 4 dB and demonstrate multi-wavelength amplification of three CWDM wavelengths simultaneously. Modelling of QD polarization dependence shows that it should be possible to achieve polarization insensitive SOAs using vertically coupled QD stacks. Amplification of ultra-fast 80 GHz optical combs and bit-error-free data signal amplification at 40 Gb/s with QD SOAs show the potential for their application in future 100 Gb Ethernet networks.

[1]  T. W. Berg,et al.  Ultrafast gain recovery and modulation limitations in self-assembled quantum-dot devices , 2001, IEEE Photonics Technology Letters.

[2]  W. Sibbett,et al.  Stable mode-locked operation up to 80 /spl deg/C from an InGaAs quantum-dot laser , 2006, IEEE Photonics Technology Letters.

[3]  Guillaume Huyet,et al.  Simultaneous achievement of narrow pulse width and low pulse-to-pulse timing jitter in 1.3 microm passively mode-locked quantum-dot lasers. , 2006, Optics letters.

[4]  Mindaugas Radziunas,et al.  40 GHz Mode-Locked Semiconductor Lasers: Theory, Simulations and Experiment , 2006 .

[5]  Dieter Bimberg Quantum dots for lasers, amplifiers and computing , 2005 .

[6]  M. Sugawara,et al.  Symmetric highly efficient (/spl sim/0 dB) wavelength conversion based on four-wave mixing in quantum dot optical amplifiers , 2002, IEEE Photonics Technology Letters.

[7]  Andreas Stintz,et al.  Bistable operation of a two-section 1.3 /spl mu/m InAs quantum dot laser-absorption saturation and the quantum confined Stark effect , 2001 .

[8]  Richard V. Penty,et al.  Quantum dot mode-locked lasers for short pulse generation and low jitter performance , 2006 .

[9]  G. Eisenstein,et al.  The impact of energy band diagram and inhomogeneous broadening on the optical differential gain in nanostructure lasers , 2005, IEEE Journal of Quantum Electronics.

[10]  Tomoyuki Akiyama,et al.  Pattern-effect-free semiconductor optical amplifier achieved using quantum dots , 2002 .

[11]  D. Bimberg,et al.  Quantum dot photonic devices for lightwave communication , 2003 .

[12]  D. Bimberg,et al.  Quantum Dot Amplifiers for 100 Gbit Ethernet , 2006, 2006 International Conference on Transparent Optical Networks.

[13]  Igor L. Krestnikov,et al.  High-power monolithic passively modelocked quantum-dot laser , 2005 .

[14]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[15]  Matthias Kuntz,et al.  Quantum dot photonic devices for lightwave communication , 2005, Microelectron. J..

[16]  Abderrahim Ramdane,et al.  Subpicosecond pulse generation at 134GHz using a quantum-dash-based Fabry-Perot laser emitting at 1.56μm , 2006 .

[17]  Richard V. Penty,et al.  Subpicosecond high-power mode locking using flared waveguide monolithic quantum-dot lasers , 2006 .

[18]  Nikolai N. Ledentsov,et al.  High speed nanophotonic devices based on quantum dots , 2006 .

[19]  Richard V. Penty,et al.  Colliding-pulse modelocked quantum dot lasers , 2005 .

[20]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[21]  Tomoyuki Akiyama,et al.  Optical Polarization Properties of InAs/GaAs Quantum Dot Semiconductor Optical Amplifier , 2004 .

[22]  Nikolai N. Ledentsov,et al.  Direct modulation and mode locking of 1.3 μm quantum dot lasers , 2004 .

[23]  Abderrahim Ramdane,et al.  Phase-amplitude characterization of a high repetition rate quantum dash passively mode-locked laser , 2006, QELS 2006.

[24]  Nikolai N. Ledentsov,et al.  InAs/InGaAs/GaAs quantum dot lasers of 1.3 μm range with enhanced optical gain , 2003 .

[25]  Y. Arakawa,et al.  Recent progress in self-assembled quantum-dot optical devices for optical telecommunication: temperature-insensitive 10 Gb s−1 directly modulated lasers and 40 Gb s−1 signal-regenerative amplifiers , 2005, 2006 Optical Fiber Communication Conference and the National Fiber Optic Engineers Conference.

[26]  Andreas Stintz,et al.  Passive mode-locking in 1.3 μm two-section InAs quantum dot lasers , 2001 .

[27]  D. Kane,et al.  Using phase retrieval to measure the intensity and phase of ultrashort pulses: frequency-resolved optical gating , 1993 .

[28]  Alexey E. Zhukov,et al.  Transform-limited optical pulses from 18 GHz monolithic modelocked quantum dot lasers operating at ∼1.3 µm , 2004 .

[29]  Richard V. Penty,et al.  10 GHz hybrid modelocking of monolithic InGaAs quantum dot lasers , 2003 .

[30]  Ian H. White,et al.  Long-wavelength monolithic mode-locked diode lasers , 2004 .

[31]  A. R. Kovsh,et al.  LETTER TO THE EDITOR: High performance narrow stripe quantum-dot lasers with etched waveguide , 2003 .

[32]  Hanan Dery,et al.  InP based lasers and optical amplifiers with wire-/dot-like active regions , 2005 .

[33]  Evgeny A. Viktorov,et al.  Model for mode locking in quantum dot lasers , 2006 .

[34]  Alexander V. Uskov,et al.  On high-speed cross-gain modulation without pattern effects in quantum dot semiconductor optical amplifiers , 2003 .

[35]  Friedhelm Hopfer,et al.  Quantum dot based photonic devices at 1.3 µm: Direct modulation, mode-locking, SOAs and VCSELs , 2006 .

[36]  D. Bimberg,et al.  Ultrafast carrier dynamics and dephasing in InAs quantum-dot amplifiers emitting near 1.3-μm-wavelength at room temperature , 2001 .

[37]  D. Bimberg,et al.  Spectral hole-burning and carrier-heating dynamics in quantum-dot amplifiers: comparison with bulk amplifiers , 2001 .

[38]  Wilson Sibbett,et al.  High-power picosecond and femtosecond pulse generation from a two-section mode-locked quantum-dot laser , 2005 .

[39]  Marius Grundmann,et al.  Nano-Optoelectronics : concepts, physics and devices , 2002 .

[40]  Z. Mi,et al.  High-Speed Quantum Dot Lasers , 2007 .

[41]  D. Bimberg,et al.  Ultrafast gain dynamics in InAs-InGaAs quantum-dot amplifiers , 2000, IEEE Photonics Technology Letters.

[42]  Dieter Bimberg,et al.  Control of the electronic properties of CdSe submonolayer superlattices via vertical correlation of quantum dots , 1999 .

[43]  J. Renaudier,et al.  Phase and amplitude characterization of a 40-GHz self-pulsating DBR laser based on autocorrelation analysis , 2006, Journal of Lightwave Technology.

[44]  Y. Nakata,et al.  Pattern‐effect‐free amplification and cross‐gain modulation achieved by using ultrafast gain nonlinearity in quantum‐dot semiconductor optical amplifiers , 2003 .

[45]  J. Oudar,et al.  Phase-amplitude characterization of a high repetition rate quantum dash passively mode-locked laser , 2006, 2006 Conference on Lasers and Electro-Optics and 2006 Quantum Electronics and Laser Science Conference.

[46]  Mitsuru Sugawara,et al.  Artificial control of optical gain polarization by stacking quantum dot layers , 2006 .

[47]  Karin Hinzer,et al.  Quantum dot semiconductor lasers with optical feedback , 2004 .

[48]  Nikolai N. Ledentsov,et al.  Quantum dot heterostructures , 1999 .

[49]  E. L. Portnoi,et al.  Monolithic and multi-gigahertz mode-locked semiconductor lasers: constructions, experiments, models and applications , 2000 .

[50]  Abderrahim Ramdane,et al.  Subpicosecond pulse generation at 134 GHz and low radiofrequency spectral linewidth in quantum dash-based Fabry-Perot lasers emitting at 1.5 [micro sign]m , 2006 .

[51]  A. R. Kovsh,et al.  Stable mode locking via ground- or excited-state transitions in a two-section quantum-dot laser , 2006 .