Mechanisms of drug resistance: quinolone resistance

Quinolone antimicrobials are synthetic and widely used in clinical medicine. Resistance emerged with clinical use and became common in some bacterial pathogens. Mechanisms of resistance include two categories of mutation and acquisition of resistance‐conferring genes. Resistance mutations in one or both of the two drug target enzymes, DNA gyrase and DNA topoisomerase IV, are commonly in a localized domain of the GyrA and ParE subunits of the respective enzymes and reduce drug binding to the enzyme–DNA complex. Other resistance mutations occur in regulatory genes that control the expression of native efflux pumps localized in the bacterial membrane(s). These pumps have broad substrate profiles that include quinolones as well as other antimicrobials, disinfectants, and dyes. Mutations of both types can accumulate with selection pressure and produce highly resistant strains. Resistance genes acquired on plasmids can confer low‐level resistance that promotes the selection of mutational high‐level resistance. Plasmid‐encoded resistance is due to Qnr proteins that protect the target enzymes from quinolone action, one mutant aminoglycoside‐modifying enzyme that also modifies certain quinolones, and mobile efflux pumps. Plasmids with these mechanisms often encode additional antimicrobial resistances and can transfer multidrug resistance that includes quinolones. Thus, the bacterial quinolone resistance armamentarium is large.

[1]  A. Robicsek,et al.  qnrB, Another Plasmid-Mediated Gene for Quinolone Resistance , 2006, Antimicrobial Agents and Chemotherapy.

[2]  A. Vicente,et al.  Epidemiology of qnrVC alleles and emergence out of the Vibrionaceae family. , 2013, Journal of medical microbiology.

[3]  C. Montero,et al.  Intrinsic Resistance of Mycobacteriumsmegmatis to Fluoroquinolones May Be Influenced by New Pentapeptide Protein MfpA , 2001, Antimicrobial Agents and Chemotherapy.

[4]  I. Broutin,et al.  Enzyme structural plasticity and the emergence of broad‐spectrum antibiotic resistance , 2008, EMBO reports.

[5]  G. Jacoby Mechanisms of resistance to quinolones. , 2005, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[6]  Q. C. Truong-Bolduc,et al.  Implication of the NorB Efflux Pump in the Adaptation of Staphylococcus aureus to Growth at Acid pH and in Resistance to Moxifloxacin , 2011, Antimicrobial Agents and Chemotherapy.

[7]  D. Hooper Bacterial topoisomerases, anti-topoisomerases, and anti-topoisomerase resistance. , 1998, Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.

[8]  D. J. Clarke,et al.  DNA Topoisomerases , 2009, Methods in Molecular Biology™.

[9]  J. Colmer-Hamood,et al.  mvaT mutation modifies the expression of the Pseudomonas aeruginosa multidrug efflux operon mexEF-oprN. , 2006, FEMS microbiology letters.

[10]  A. Carattoli,et al.  Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. , 2009, The Journal of antimicrobial chemotherapy.

[11]  R. Brennan,et al.  Structural and biochemical characterization of MepR, a multidrug binding transcription regulator of the Staphylococcus aureus multidrug efflux pump MepA , 2009, Nucleic acids research.

[12]  R. Bonomo,et al.  OqxAB, a Quinolone and Olaquindox Efflux Pump, Is Widely Distributed among Multidrug-Resistant Klebsiella pneumoniae Isolates of Human Origin , 2013, Antimicrobial Agents and Chemotherapy.

[13]  M. Webber,et al.  High levels of multidrug resistance in clinical isolates of Gram-negative pathogens from Nigeria. , 2011, International journal of antimicrobial agents.

[14]  R Ohki,et al.  bmr3, a third multidrug transporter gene of Bacillus subtilis , 1997, Journal of bacteriology.

[15]  Q. C. Truong-Bolduc,et al.  Reduced Aeration Affects the Expression of the NorB Efflux Pump of Staphylococcus aureus by Posttranslational Modification of MgrA , 2012, Journal of bacteriology.

[16]  M. Galas,et al.  Differential Distribution of Plasmid-Mediated Quinolone Resistance Genes in Clinical Enterobacteria with Unusual Phenotypes of Quinolone Susceptibility from Argentina , 2013, Antimicrobial Agents and Chemotherapy.

[17]  G. Jacoby,et al.  oqxAB Encoding a Multidrug Efflux Pump in Human Clinical Isolates of Enterobacteriaceae , 2009, Antimicrobial Agents and Chemotherapy.

[18]  Y. Arakawa,et al.  Plasmid-Mediated qepA Gene among Escherichia coli Clinical Isolates from Japan , 2008, Antimicrobial Agents and Chemotherapy.

[19]  Yanpeng Ding,et al.  NorB, an Efflux Pump in Staphylococcus aureus Strain MW2, Contributes to Bacterial Fitness in Abscesses , 2008, Journal of bacteriology.

[20]  S. Sørensen,et al.  Substrate specificity of the OqxAB multidrug resistance pump in Escherichia coli and selected enteric bacteria. , 2007, The Journal of antimicrobial chemotherapy.

[21]  K. Drlica,et al.  DNA gyrase, topoisomerase IV, and the 4-quinolones , 1997, Microbiology and molecular biology reviews : MMBR.

[22]  Jian-Hua Liu,et al.  Prevalence and Dissemination of oqxAB in Escherichia coli Isolates from Animals, Farmworkers, and the Environment , 2010, Antimicrobial Agents and Chemotherapy.

[23]  J. Blanchard,et al.  Structural and Biochemical Analysis of the Pentapeptide Repeat Protein EfsQnr, a Potent DNA Gyrase Inhibitor , 2010, Antimicrobial Agents and Chemotherapy.

[24]  D. Hooper,et al.  Clinical Importance and Epidemiology of Quinolone Resistance , 2014, Infection & chemotherapy.

[25]  J. Martínez,et al.  Predictive analysis of transmissible quinolone resistance indicates Stenotrophomonas maltophilia as a potential source of a novel family of Qnr determinants , 2008, BMC Microbiology.

[26]  J. Pachón,et al.  In Vitro Effect of qnrA1, qnrB1, and qnrS1 Genes on Fluoroquinolone Activity against Isogenic Escherichia coli Isolates with Mutations in gyrA and parC , 2010, Antimicrobial Agents and Chemotherapy.

[27]  Q. C. Truong-Bolduc,et al.  Phosphorylation of MgrA and Its Effect on Expression of the NorA and NorB Efflux Pumps of Staphylococcus aureus , 2010, Journal of bacteriology.

[28]  K. Köhrer,et al.  Characterization of grlA, grlB, gyrA, and gyrB Mutations in 116 Unrelated Isolates of Staphylococcus aureus and Effects of Mutations on Ciprofloxacin MIC , 1998, Antimicrobial Agents and Chemotherapy.

[29]  A. Carattoli,et al.  Novel genetic environment of plasmid-mediated quinolone resistance gene qnrB2 in Salmonella Bredeney from poultry. , 2009, The Journal of antimicrobial chemotherapy.

[30]  G. Jacoby,et al.  Mechanism of plasmid-mediated quinolone resistance , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[31]  S. Levy,et al.  The mar regulon: multiple resistance to antibiotics and other toxic chemicals. , 1999, Trends in microbiology.

[32]  A. Carattoli,et al.  Plasmid Content of a Clinically Relevant Klebsiella pneumoniae Clone from the Czech Republic Producing CTX-M-15 and QnrB1 , 2012, Antimicrobial Agents and Chemotherapy.

[33]  S. Schuldiner,et al.  Mutations affecting substrate specificity of the Bacillus subtilis multidrug transporter Bmr , 1997, Journal of bacteriology.

[34]  A. Carattoli,et al.  Complete sequences of IncHI1 plasmids carrying blaCTX-M-1 and qnrS1 in equine Escherichia coli provide new insights into plasmid evolution. , 2014, The Journal of antimicrobial chemotherapy.

[35]  J. Martínez,et al.  SmQnr Contributes to Intrinsic Resistance to Quinolones in Stenotrophomonas maltophilia , 2009, Antimicrobial Agents and Chemotherapy.

[36]  L. Fisher,et al.  Streptococcus pneumoniae DNA Gyrase and Topoisomerase IV: Overexpression, Purification, and Differential Inhibition by Fluoroquinolones , 1999, Antimicrobial Agents and Chemotherapy.

[37]  Mark R. Sanderson,et al.  Supplementary materials for Structure of an ‘ open ’ clamp type II topoisomerase-DNA complex provides a mechanism for DNA capture and transport , 2013 .

[38]  S. Sørensen,et al.  Nucleotide sequence of pOLA52: a conjugative IncX1 plasmid from Escherichia coli which enables biofilm formation and multidrug efflux. , 2008, Plasmid.

[39]  Alain Liard,et al.  Vibrionaceae as a possible source of Qnr-like quinolone resistance determinants. , 2005, The Journal of antimicrobial chemotherapy.

[40]  G. McDermott,et al.  A Periplasmic Drug-Binding Site of the AcrB Multidrug Efflux Pump: a Crystallographic and Site-Directed Mutagenesis Study , 2005, Journal of bacteriology.

[41]  M. H. Wong,et al.  PMQR genes oqxAB and aac(6′)Ib-cr accelerate the development of fluoroquinolone resistance in Salmonella typhimurium , 2014, Front. Microbiol..

[42]  S. Fanning,et al.  Elucidating the Regulon of Multidrug Resistance Regulator RarA in Klebsiella pneumoniae , 2013, Antimicrobial Agents and Chemotherapy.

[43]  G. Kaatz,et al.  MepR, a Repressor of the Staphylococcus aureus MATE Family Multidrug Efflux Pump MepA, Is a Substrate-Responsive Regulatory Protein , 2006, Antimicrobial Agents and Chemotherapy.

[44]  T. Tsuchiya,et al.  NorM of Vibrio parahaemolyticus Is an Na+-Driven Multidrug Efflux Pump , 2000, Journal of bacteriology.

[45]  G. Y. Lesher,et al.  1,8-NAPHTHYRIDINE DERIVATIVES. A NEW CLASS OF CHEMOTHERAPEUTIC AGENTS. , 1962, Journal of medicinal and pharmaceutical chemistry.

[46]  P. Higgins,et al.  Characterization of RarA, a Novel AraC Family Multidrug Resistance Regulator in Klebsiella pneumoniae , 2012, Antimicrobial Agents and Chemotherapy.

[47]  J. H. Chou,et al.  Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus , 1993, Journal of bacteriology.

[48]  Qijing Zhang,et al.  Spread of oqxAB in Salmonella enterica serotype Typhimurium predominantly by IncHI2 plasmids. , 2013, The Journal of antimicrobial chemotherapy.

[49]  T. Tsuchiya,et al.  Gene cloning and characterization of SdrM, a chromosomally-encoded multidrug efflux pump, from Staphylococcus aureus. , 2006, Biological & pharmaceutical bulletin.

[50]  M. H. Wong,et al.  First Detection of oqxAB in Salmonella spp. Isolated from Food , 2012, Antimicrobial Agents and Chemotherapy.

[51]  T. Köhler,et al.  Differential selection of multidrug efflux systems by quinolones in Pseudomonas aeruginosa , 1997, Antimicrobial agents and chemotherapy.

[52]  A. Fosberry,et al.  Structural basis of quinolone inhibition of type IIA topoisomerases and target-mediated resistance , 2010, Nature Structural &Molecular Biology.

[53]  D. Hooper,et al.  Selective Targeting of Topoisomerase IV and DNA Gyrase in Staphylococcus aureus: Different Patterns of Quinolone- Induced Inhibition of DNA Synthesis , 2000, Antimicrobial Agents and Chemotherapy.

[54]  G. Jacoby,et al.  Quinolone resistance from a transferable plasmid , 1998, The Lancet.

[55]  A. Matin,et al.  EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB , 1995, Journal of bacteriology.

[56]  G. Jacoby,et al.  Interaction of plasmid and host quinolone resistance. , 2003, The Journal of antimicrobial chemotherapy.

[57]  D. Hooper,et al.  Quinolone resistance mutations in topoisomerase IV: relationship to the flqA locus and genetic evidence that topoisomerase IV is the primary target and DNA gyrase is the secondary target of fluoroquinolones in Staphylococcus aureus , 1996, Antimicrobial agents and chemotherapy.

[58]  X. Ye,et al.  Prevalence of the oqxAB gene complex in Klebsiella pneumoniae and Escherichia coli clinical isolates. , 2012, The Journal of antimicrobial chemotherapy.

[59]  P. Nordmann Plasmid-Mediated Quinolone Resistance , 2008 .

[60]  T. Nakae,et al.  MexZ-mediated regulation of mexXY multidrug efflux pump expression in Pseudomonas aeruginosa by binding on the mexZ-mexX intergenic DNA. , 2004, FEMS microbiology letters.

[61]  R. Musumeci,et al.  Prevalence of plasmid-mediated quinolone resistance genes in uropathogenic Escherichia coli isolated in a teaching hospital of northern Italy. , 2012, Microbial drug resistance.

[62]  E. Cambau,et al.  Description of a 2,683-Base-Pair Plasmid Containing qnrD in Two Providencia rettgeri Isolates , 2011, Antimicrobial Agents and Chemotherapy.

[63]  W. V. van Wamel,et al.  Rat/MgrA, a Regulator of Autolysis, Is a Regulator of Virulence Genes in Staphylococcus aureus , 2005, Infection and Immunity.

[64]  A. Carattoli,et al.  High prevalence of oqxAB in Escherichia coli isolates from domestic and wild lagomorphs in Italy. , 2014, Microbial drug resistance.

[65]  Changqin Hu,et al.  Joint effects of topoisomerase alterations and plasmid-mediated quinolone-resistant determinants in Salmonella enterica Typhimurium. , 2011, Microbial drug resistance.

[66]  K. Drlica The mutant selection window and antimicrobial resistance. , 2003, The Journal of antimicrobial chemotherapy.

[67]  P. Nordmann,et al.  Emergence of Plasmid-Mediated Quinolone Resistance in Escherichia coli in Europe , 2005, Antimicrobial Agents and Chemotherapy.

[68]  W. Kohlbrenner,et al.  Mechanism of quinolone inhibition of DNA gyrase. Appearance of unique norfloxacin binding sites in enzyme-DNA complexes. , 1989, The Journal of biological chemistry.

[69]  G. Jacoby,et al.  Plasmid-Mediated Quinolone Resistance in Clinical Isolates of Escherichia coli from Shanghai, China , 2003, Antimicrobial Agents and Chemotherapy.

[70]  P. Courvalin,et al.  Transferable Resistance to Aminoglycosides by Methylation of G1405 in 16S rRNA and to Hydrophilic Fluoroquinolones by QepA-Mediated Efflux in Escherichia coli , 2007, Antimicrobial Agents and Chemotherapy.

[71]  F. Fernández-Cuenca,et al.  Contribution of OqxAB efflux pumps to quinolone resistance in extended-spectrum-β-lactamase-producing Klebsiella pneumoniae. , 2013, The Journal of antimicrobial chemotherapy.

[72]  R. Skurray,et al.  Regulation of Bacterial Drug Export Systems , 2002, Microbiology and Molecular Biology Reviews.

[73]  Ling-Hui Li,et al.  Complete Nucleotide Sequence of pK245, a 98-Kilobase Plasmid Conferring Quinolone Resistance and Extended-Spectrum-β-Lactamase Activity in a Clinical Klebsiella pneumoniae Isolate , 2006, Antimicrobial Agents and Chemotherapy.

[74]  Jian Sun,et al.  Dissemination and Characterization of Plasmids Carrying oqxAB-bla CTX-M Genes in Escherichia coli Isolates from Food-Producing Animals , 2013, PloS one.

[75]  L. Fisher,et al.  DNA Gyrase and Topoisomerase IV Are Dual Targets of Clinafloxacin Action in Streptococcus pneumoniae , 1998, Antimicrobial Agents and Chemotherapy.

[76]  H. Barrios,et al.  Prevalence and characterization of plasmid-mediated quinolone resistance genes in extended-spectrum β-lactamase-producing Enterobacteriaceae isolates in Mexico. , 2011, Microbial drug resistance.

[77]  H. Nikaido,et al.  Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein , 2003, Molecular microbiology.

[78]  A. Robicsek,et al.  Fluoroquinolone-modifying enzyme: a new adaptation of a common aminoglycoside acetyltransferase , 2006, Nature Medicine.

[79]  A. Robicsek,et al.  Prevalence in the United States of aac(6′)-Ib-cr Encoding a Ciprofloxacin-Modifying Enzyme , 2006, Antimicrobial Agents and Chemotherapy.

[80]  G. Jacoby,et al.  Phylogenetic Analysis of Chromosomally Determined Qnr and Related Proteins , 2013, Antimicrobial Agents and Chemotherapy.

[81]  A. Vicente,et al.  New qnr Gene Cassettes Associated with Superintegron Repeats in Vibrio cholerae O1 , 2008, Emerging infectious diseases.

[82]  F. Mégraud,et al.  Epidemiology and mechanism of antibiotic resistance in Helicobacter pylori. , 1998, Gastroenterology.

[83]  A. Robicsek,et al.  Broader Distribution of Plasmid-Mediated Quinolone Resistance in the United States , 2005, Antimicrobial Agents and Chemotherapy.

[84]  G. Jacoby,et al.  Prevalence of Plasmid-Mediated Quinolone Resistance Determinants over a 9-Year Period , 2008, Antimicrobial Agents and Chemotherapy.

[85]  X. Li,et al.  Influence of the MexA-MexB-oprM multidrug efflux system on expression of the MexC-MexD-oprJ and MexE-MexF-oprN multidrug efflux systems in Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.

[86]  D. Heinrichs,et al.  Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression , 1996, Antimicrobial agents and chemotherapy.

[87]  N. Woodford,et al.  Complete nucleotide sequence of the IncN plasmid pKOX105 encoding VIM-1, QnrS1 and SHV-12 proteins in Enterobacteriaceae from Bolzano, Italy compared with IncN plasmids encoding KPC enzymes in the USA. , 2010, The Journal of antimicrobial chemotherapy.

[88]  K. Skarstad,et al.  Transcriptional activation of promoters of the superoxide and multiple antibiotic resistance regulons by Rob, a binding protein of the Escherichia coli origin of chromosomal replication , 1996, Journal of bacteriology.

[89]  P. Nordmann,et al.  Plasmid-mediated quinolone resistance in Aeromonas allosaccharophila recovered from a Swiss lake. , 2008, The Journal of antimicrobial chemotherapy.

[90]  H. Hiasa The Glu-84 of the ParC subunit plays critical roles in both topoisomerase IV-quinolone and topoisomerase IV-DNA interactions. , 2002, Biochemistry.

[91]  P. Nordmann,et al.  Plasmid-Mediated Quinolone Resistance; Interactions between Human, Animal, and Environmental Ecologies , 2012, Front. Microbio..

[92]  Hiroshi Nikaido,et al.  Efflux-Mediated Drug Resistance in Bacteria , 2012, Drugs.

[93]  L. Frangeul,et al.  Sequence of Conjugative Plasmid pIP1206 Mediating Resistance to Aminoglycosides by 16S rRNA Methylation and to Hydrophilic Fluoroquinolones by Efflux , 2008, Antimicrobial Agents and Chemotherapy.

[94]  D. Hooper,et al.  A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus , 1991, Journal of bacteriology.

[95]  K. Hopkins,et al.  Plasmid-mediated Quinolone Resistance in Salmonella enterica, United Kingdom , 2008, Emerging infectious diseases.

[96]  E. L. Zechiedrich,et al.  Relative contributions of the AcrAB, MdfA and NorE efflux pumps to quinolone resistance in Escherichia coli. , 2003, The Journal of antimicrobial chemotherapy.

[97]  Deborah Fass,et al.  Quaternary changes in topoisomerase II may direct orthogonal movement of two DNA strands , 1999, Nature Structural Biology.

[98]  X. Ye,et al.  Decreased quinolone susceptibility in high percentage of Enterobacter cloacae clinical isolates caused only by Qnr determinants. , 2010, Diagnostic microbiology and infectious disease.

[99]  H. Hiasa,et al.  DNA Strand Cleavage Is Required for Replication Fork Arrest by a Frozen Topoisomerase-Quinolone-DNA Ternary Complex* , 1996, The Journal of Biological Chemistry.

[100]  Jien-Wei Liu,et al.  Spread of ISCR1 Elements Containing blaDHA-1 and Multiple Antimicrobial Resistance Genes Leading to Increase of Flomoxef Resistance in Extended-Spectrum-β-Lactamase-Producing Klebsiella pneumoniae , 2011, Antimicrobial Agents and Chemotherapy.

[101]  Z. Zeng,et al.  High Prevalence of Plasmid-Mediated Quinolone Resistance Determinants qnr, aac(6′)-Ib-cr, and qepA among Ceftiofur-Resistant Enterobacteriaceae Isolates from Companion and Food-Producing Animals , 2008, Antimicrobial Agents and Chemotherapy.

[102]  G. Rapoport,et al.  The two‐component system ArlS–ArlR is a regulator of virulence gene expression in Staphylococcus aureus , 2001, Molecular microbiology.

[103]  X. Li,et al.  Interplay between the MexA-MexB-OprM multidrug efflux system and the outer membrane barrier in the multiple antibiotic resistance of Pseudomonas aeruginosa. , 2000, The Journal of antimicrobial chemotherapy.

[104]  I. Eperon,et al.  The complex of DNA gyrase and quinolone drugs with DNA forms a barrier to transcription by RNA polymerase. , 1994, Journal of molecular biology.

[105]  J. Berger,et al.  Structure and mechanism of DNA topoisomerase II , 1996, Nature.

[106]  R. Owens,et al.  Clinical use of the fluoroquinolones. , 2000, The Medical clinics of North America.

[107]  Q. C. Truong-Bolduc,et al.  The Transcriptional Regulators NorG and MgrA Modulate Resistance to both Quinolones and β-Lactams in Staphylococcus aureus , 2007, Journal of bacteriology.

[108]  G. Jacoby,et al.  Induction of Plasmid-Carried qnrS1 in Escherichia coli by Naturally Occurring Quinolones and Quorum-Sensing Signal Molecules , 2013, Antimicrobial Agents and Chemotherapy.

[109]  Q. C. Truong-Bolduc,et al.  Transcriptional Profiling Analysis of the Global Regulator NorG, a GntR-Like Protein of Staphylococcus aureus , 2011, Journal of bacteriology.

[110]  C. Torres,et al.  pMdT1, a small ColE1-like plasmid mobilizing a new variant of the aac(6')-Ib-cr gene in Salmonella enterica serovar Typhimurium. , 2013, The Journal of antimicrobial chemotherapy.

[111]  O. Sahin,et al.  In Vivo Selection of Campylobacter Isolates with High Levels of Fluoroquinolone Resistance Associated with gyrA Mutations and the Function of the CmeABC Efflux Pump , 2003, Antimicrobial Agents and Chemotherapy.

[112]  Wah Chiu,et al.  Structure of the AcrAB-TolC multidrug efflux pump , 2014, Nature.

[113]  R. Lin,et al.  Detection and genetic characterisation of qnrB in hospital isolates of Klebsiella pneumoniae in Singapore. , 2009, International Journal of Antimicrobial Agents.

[114]  F. Aarestrup,et al.  qnrD, a Novel Gene Conferring Transferable Quinolone Resistance in Salmonella enterica Serovar Kentucky and Bovismorbificans Strains of Human Origin , 2008, Antimicrobial Agents and Chemotherapy.

[115]  K. Sakae,et al.  Cloning of a Novel Gene for Quinolone Resistance from a Transferable Plasmid in Shigella flexneri 2b , 2005, Antimicrobial Agents and Chemotherapy.

[116]  Á. Pascual,et al.  Qnr-like pentapeptide repeat proteins in gram-positive bacteria. , 2008, The Journal of antimicrobial chemotherapy.

[117]  D. Church,et al.  Surveillance for plasmid-mediated quinolone resistance determinants in Enterobacteriaceae within the Calgary Health Region, Canada: the emergence of aac(6')-Ib-cr. , 2008, The Journal of antimicrobial chemotherapy.

[118]  L. Vinué,et al.  New genetic environments of aac(6')-Ib-cr gene in a multiresistant Klebsiella oxytoca strain causing an outbreak in a pediatric intensive care unit. , 2011, Diagnostic microbiology and infectious disease.

[119]  J. Blázquez,et al.  Exposure to diverse antimicrobials induces the expression of qnrB1, qnrD and smaqnr genes by SOS-dependent regulation. , 2012, The Journal of antimicrobial chemotherapy.

[120]  K. Poole,et al.  Overexpression of the mexC–mexD–oprJ efflux operon in nfxB‐type multidrug‐resistant strains of Pseudomonas aeruginosa , 1996, Molecular microbiology.

[121]  A. Driessen,et al.  The Lactococcal lmrP Gene Encodes a Proton Motive Force- dependent Drug Transporter (*) , 1995, The Journal of Biological Chemistry.

[122]  P. Nordmann,et al.  Expanded-spectrum β-Lactamase and Plasmid-mediated Quinolone Resistance , 2007, Emerging infectious diseases.

[123]  M. Kaku,et al.  Characterization of qnrB-Like Genes in Citrobacter Species of the American Type Culture Collection , 2013, Antimicrobial Agents and Chemotherapy.

[124]  Jian Sun,et al.  Prevalence and plasmid characterization of the qnrD determinant in Enterobacteriaceae isolated from animals, retail meat products, and humans. , 2013, Microbial drug resistance.

[125]  S. Campoy,et al.  The SOS response promotes qnrB quinolone‐resistance determinant expression , 2009, EMBO reports.

[126]  H. Imberechts,et al.  The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar typhimurium phage type DT204. , 2002, Microbial drug resistance.

[127]  F. Yoshimura,et al.  Active Efflux of Norfloxacin byBacteroides fragilis , 1998, Antimicrobial Agents and Chemotherapy.

[128]  Anthony Maxwell,et al.  Crystal structure of the breakage–reunion domain of DNA gyrase , 1997, Nature.

[129]  I. Uchida,et al.  Fluoroquinolone resistance mechanisms in an Escherichia coli isolate, HUE1, without quinolone resistance-determining region mutations , 2013, Front. Microbiol..

[130]  V. Dubois,et al.  Evolution of an Incompatibility Group IncA/C Plasmid Harboring blaCMY-16 and qnrA6 Genes and Its Transfer through Three Clones of Providencia stuartii during a Two-Year Outbreak in a Tunisian Burn Unit , 2011, Antimicrobial Agents and Chemotherapy.

[131]  D. Hooper,et al.  A New Two-Component Regulatory System Involved in Adhesion, Autolysis, and Extracellular Proteolytic Activity ofStaphylococcus aureus , 2000, Journal of bacteriology.

[132]  A. Alonso,et al.  Cloning and Characterization of SmeDEF, a Novel Multidrug Efflux Pump from Stenotrophomonas maltophilia , 2000, Antimicrobial Agents and Chemotherapy.

[133]  Sanath H. Kumar,et al.  LmrS Is a Multidrug Efflux Pump of the Major Facilitator Superfamily from Staphylococcus aureus , 2010, Antimicrobial Agents and Chemotherapy.

[134]  Q. C. Truong-Bolduc,et al.  NorC, a New Efflux Pump Regulated by MgrA of Staphylococcus aureus , 2006, Antimicrobial Agents and Chemotherapy.

[135]  G. Jacoby,et al.  SOS Regulation of qnrB Expression , 2008, Antimicrobial Agents and Chemotherapy.

[136]  Q. C. Truong-Bolduc,et al.  MgrA Is a Multiple Regulator of Two New Efflux Pumps in Staphylococcus aureus , 2005, Journal of bacteriology.

[137]  V. Jarlier,et al.  The Pentapeptide Repeat Proteins MfpAMt and QnrB4 Exhibit Opposite Effects on DNA Gyrase Catalytic Reactions and on the Ternary Gyrase-DNA-Quinolone Complex , 2008, Journal of bacteriology.

[138]  G. Jacoby,et al.  Mutational Analysis of Quinolone Resistance Protein QnrB1 , 2013, Antimicrobial Agents and Chemotherapy.

[139]  S. Herrera-León,et al.  Prevalence of quinolone resistance determinants in non-typhoidal Salmonella isolates from human origin in Extremadura, Spain. , 2014, Diagnostic microbiology and infectious disease.

[140]  Alain Liard,et al.  Origin of Plasmid-Mediated Quinolone Resistance Determinant QnrA , 2005, Antimicrobial Agents and Chemotherapy.

[141]  D. Hooper,et al.  Dual Targeting of Topoisomerase IV and Gyrase To Reduce Mutant Selection: Direct Testing of the Paradigm by Using WCK-1734, a New Fluoroquinolone, and Ciprofloxacin , 2005, Antimicrobial Agents and Chemotherapy.

[142]  Jian-Hua Liu,et al.  Coprevalence of Plasmid-Mediated Quinolone Resistance Determinants QepA, Qnr, and AAC(6′)-Ib-cr among 16S rRNA Methylase RmtB-Producing Escherichia coli Isolates from Pigs , 2008, Antimicrobial Agents and Chemotherapy.

[143]  V. Nagaraja,et al.  Molecular Basis for the Differential Quinolone Susceptibility of Mycobacterial DNA Gyrase , 2014, Antimicrobial Agents and Chemotherapy.

[144]  G. Jacoby,et al.  Quinolone Induction of qnrVS1 in Vibrio splendidus and Plasmid-Carried qnrS1 in Escherichia coli, a Mechanism Independent of the SOS System , 2011, Antimicrobial Agents and Chemotherapy.

[145]  P. Heisig,et al.  Mechanisms of quinolone resistance , 2005, Infection.

[146]  J. Crouzet,et al.  Differential behaviors of Staphylococcus aureus and Escherichia coli type II DNA topoisomerases , 1996, Antimicrobial agents and chemotherapy.

[147]  A. Carattoli,et al.  Plasmid-mediated quinolone resistance and β-lactamases in Escherichia coli from healthy animals from Nigeria. , 2011, The Journal of antimicrobial chemotherapy.

[148]  I. Laponogov,et al.  Structural insight into the quinolone–DNA cleavage complex of type IIA topoisomerases , 2009, Nature Structural &Molecular Biology.

[149]  P. Ruggerone,et al.  AcrB drug-binding pocket substitution confers clinically relevant resistance and altered substrate specificity , 2015, Proceedings of the National Academy of Sciences.

[150]  H. Nikaido,et al.  AcrB Multidrug Efflux Pump of Escherichia coli: Composite Substrate-Binding Cavity of Exceptional Flexibility Generates Its Extremely Wide Substrate Specificity , 2003, Journal of bacteriology.

[151]  D. Hooper,et al.  New Plasmid-Mediated Quinolone Resistance Gene, qnrC, Found in a Clinical Isolate of Proteus mirabilis , 2009, Antimicrobial Agents and Chemotherapy.

[152]  D. Hooper,et al.  Quinolone resistance locus nfxD of Escherichia coli is a mutant allele of the parE gene encoding a subunit of topoisomerase IV , 1997, Antimicrobial agents and chemotherapy.

[153]  N. Masuda,et al.  Substrate Specificities of MexAB-OprM, MexCD-OprJ, and MexXY-OprM Efflux Pumps in Pseudomonas aeruginosa , 2000, Antimicrobial Agents and Chemotherapy.

[154]  L. Martínez-Martínez,et al.  qnr, aac(6')-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. , 2012, The Journal of antimicrobial chemotherapy.

[155]  H. Nakaminami,et al.  Fluoroquinolone Efflux by the Plasmid-Mediated Multidrug Efflux Pump QacB Variant QacBIII in Staphylococcus aureus , 2010, Antimicrobial Agents and Chemotherapy.

[156]  R. Wise,et al.  Identification of an Efflux Pump Gene,pmrA, Associated with Fluoroquinolone Resistance inStreptococcus pneumoniae , 1999, Antimicrobial Agents and Chemotherapy.

[157]  J. Shin,et al.  Prevalence of Plasmid-mediated Quinolone Resistance and Its Association with Extended-spectrum Beta-lactamase and AmpC Beta-lactamase in Enterobacteriaceae , 2011, The Korean journal of laboratory medicine.

[158]  R. Leclercq,et al.  Role of a qnr-Like Gene in the Intrinsic Resistance of Enterococcus faecalis to Fluoroquinolones , 2007, Antimicrobial Agents and Chemotherapy.

[159]  N. Gotoh,et al.  Characterization of MexE–MexF–OprN, a positively regulated multidrug efflux system of Pseudomonas aeruginosa , 1997, Molecular microbiology.

[160]  G. Jacoby,et al.  Structure of QnrB1, a Plasmid-mediated Fluoroquinolone Resistance Factor* , 2011, The Journal of Biological Chemistry.

[161]  E. Snesrud,et al.  Contribution of Resistance-Nodulation-Cell Division Efflux Systems to Antibiotic Resistance and Biofilm Formation in Acinetobacter baumannii , 2015, mBio.

[162]  S. Brisse,et al.  Complete Nucleotide Sequence of Two Multidrug-Resistant IncR Plasmids from Klebsiella pneumoniae , 2014, Antimicrobial Agents and Chemotherapy.

[163]  K. Nikaido,et al.  Identification and characterization of porins in Pseudomonas aeruginosa. , 1991, The Journal of biological chemistry.

[164]  N. Yamaguchi,et al.  High Prevalence of qnr and aac(6′)-Ib-cr Genes in Both Water-Borne Environmental Bacteria and Clinical Isolates of Citrobacter freundii in China , 2011, Microbes and environments.

[165]  Liliang,et al.  Characterization of Plasmids Carrying oqxAB in blaCTX-M-Negative Escherichia coli Isolates from Food-Producing Animals , 2014 .

[166]  N. Osheroff,et al.  Mechanism of Quinolone Action and Resistance , 2014, Biochemistry.

[167]  M. Webber,et al.  Multiple transmissible genes encoding fluoroquinolone and third-generation cephalosporin resistance co-located in non-typhoidal Salmonella isolated from food-producing animals in China. , 2014, International journal of antimicrobial agents.

[168]  K. Ubukata,et al.  Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus , 1989, Antimicrobial Agents and Chemotherapy.

[169]  Wei Yang,et al.  Detection of the Smqnr quinolone protection gene and its prevalence in clinical isolates of Stenotrophomonas maltophilia in China. , 2012, Journal of medical microbiology.

[170]  A. Martins,et al.  Assessing the molecular basis of transferable quinolone resistance in Escherichia coli and Salmonella spp. from food-producing animals and food products. , 2013, Veterinary microbiology.

[171]  G. Jacoby,et al.  Plasmid-Mediated Quinolone Resistance , 2008, Microbiology spectrum.

[172]  P. O’Toole,et al.  Novel Chromosomally Encoded Multidrug Efflux Transporter MdeA in Staphylococcus aureus , 2004, Antimicrobial Agents and Chemotherapy.

[173]  N. Osheroff,et al.  Drug interactions with Bacillus anthracis topoisomerase IV: biochemical basis for quinolone action and resistance. , 2012, Biochemistry.

[174]  T. Vernet,et al.  PatA and PatB form a functional heterodimeric ABC multidrug efflux transporter responsible for the resistance of Streptococcus pneumoniae to fluoroquinolones. , 2012, Biochemistry.

[175]  P. Nordmann,et al.  Unexpected Occurrence of Plasmid-Mediated Quinolone Resistance Determinants in Environmental Aeromonas spp. , 2008, Emerging infectious diseases.

[176]  Qijing Zhang,et al.  CmeABC Functions as a Multidrug Efflux System in Campylobacter jejuni , 2002, Antimicrobial Agents and Chemotherapy.

[177]  M. AbuOun,et al.  Fluoroquinolone Efflux in Streptococcus suis Is Mediated by SatAB and Not by SmrA , 2011, Antimicrobial Agents and Chemotherapy.

[178]  S. Sørensen,et al.  Plasmid-Encoded Multidrug Efflux Pump Conferring Resistance to Olaquindox in Escherichia coli , 2004, Antimicrobial Agents and Chemotherapy.

[179]  K. Poole,et al.  SmeDEF Multidrug Efflux Pump Contributes to Intrinsic Multidrug Resistance in Stenotrophomonas maltophilia , 2001, Antimicrobial Agents and Chemotherapy.

[180]  H. Ito,et al.  Mechanism of action of quinolones against Escherichia coli DNA gyrase , 1993, Antimicrobial Agents and Chemotherapy.

[181]  L. Martínez-Martínez,et al.  Mutant Prevention Concentrations of Fluoroquinolones for Enterobacteriaceae Expressing the Plasmid-Carried Quinolone Resistance Determinant qnrA1 , 2007, Antimicrobial Agents and Chemotherapy.

[182]  L. Fisher,et al.  Targeting of DNA gyrase in Streptococcus pneumoniae by sparfloxacin: selective targeting of gyrase or topoisomerase IV by quinolones , 1997, Antimicrobial agents and chemotherapy.

[183]  S. Choi,et al.  Effects of a plasmid-encoded qnrA1 determinant in Escherichia coli strains carrying chromosomal mutations in the acrAB efflux pump genes. , 2008, Diagnostic microbiology and infectious disease.

[184]  C. Jacquet,et al.  Efflux Pump Lde Is Associated with Fluoroquinolone Resistance in Listeria monocytogenes , 2003, Antimicrobial Agents and Chemotherapy.

[185]  P. Nordmann,et al.  ISEcp1-Mediated Transposition of qnrB-Like Gene in Escherichia coli , 2008, Antimicrobial Agents and Chemotherapy.

[186]  M. Tsukamura,et al.  Therapeutic effect of a new antibacterial substance ofloxacin (DL8280) on pulmonary tuberculosis. , 2015, The American review of respiratory disease.

[187]  Kenichiro Shimizu,et al.  Smqnr, a New Chromosome-Carried Quinolone Resistance Gene in Stenotrophomonas maltophilia , 2008, Antimicrobial Agents and Chemotherapy.

[188]  P. Rice,et al.  An oxidation-sensing mechanism is used by the global regulator MgrA in Staphylococcus aureus , 2006, Nature chemical biology.

[189]  S. Nakamura,et al.  Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli , 1990, Antimicrobial Agents and Chemotherapy.

[190]  Alessandra Carattoli,et al.  Resistance Plasmid Families in Enterobacteriaceae , 2009, Antimicrobial Agents and Chemotherapy.

[191]  L. Martínez-Martínez,et al.  qnr Gene Nomenclature , 2008, Antimicrobial Agents and Chemotherapy.

[192]  R. Koncan,et al.  Description and plasmid characterization of qnrD determinants in Proteus mirabilis and Morganella morganii. , 2012, Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.

[193]  P. Nordmann,et al.  Plasmid-Mediated Quinolone Resistance Pump QepA2 in an Escherichia coli Isolate from France , 2008, Antimicrobial Agents and Chemotherapy.

[194]  Anthony Maxwell,et al.  A Fluoroquinolone Resistance Protein from Mycobacterium tuberculosis That Mimics DNA , 2005, Science.

[195]  J. Pagés,et al.  The AcrAB-TolC Efflux Pump Contributes to Multidrug Resistance in the Nosocomial Pathogen Enterobacter aerogenes , 2002, Antimicrobial Agents and Chemotherapy.

[196]  P. Courvalin,et al.  RND-Type Efflux Pumps in Multidrug-Resistant Clinical Isolates of Acinetobacter baumannii: Major Role for AdeABC Overexpression and AdeRS Mutations , 2013, Antimicrobial Agents and Chemotherapy.

[197]  S. Choi,et al.  Detection of qnr in Clinical Isolates of Escherichia coli from Korea , 2005, Antimicrobial Agents and Chemotherapy.

[198]  A. Maxwell,et al.  A single point mutation in the DNA gyrase A protein greatly reduces binding of fluoroquinolones to the gyrase-DNA complex , 1993, Antimicrobial Agents and Chemotherapy.

[199]  K. Piekarska,et al.  Co-existence of plasmid-mediated quinolone resistance determinants and mutations in gyrA and parC among fluoroquinolone-resistant clinical Enterobacteriaceae isolated in a tertiary hospital in Warsaw, Poland. , 2015, International Journal of Antimicrobial Agents.

[200]  P. Nordmann,et al.  Complete sequencing of an IncH plasmid carrying the blaNDM-1, blaCTX-M-15 and qnrB1 genes. , 2012, The Journal of antimicrobial chemotherapy.

[201]  P. Courvalin,et al.  Overexpression of the Novel MATE Fluoroquinolone Efflux Pump FepA in Listeria monocytogenes Is Driven by Inactivation of Its Local Repressor FepR , 2014, PloS one.

[202]  P. Nordmann,et al.  Vibrio splendidus as the Source of Plasmid-Mediated QnrS-Like Quinolone Resistance Determinants , 2007, Antimicrobial Agents and Chemotherapy.

[203]  J. Jun,et al.  Prevalence of aac(6′)-Ib-cr Encoding a Ciprofloxacin-Modifying Enzyme among Enterobacteriaceae Blood Isolates in Korea , 2009, Antimicrobial Agents and Chemotherapy.

[204]  G. Kaatz,et al.  Analyses of Multidrug Efflux Pump-Like Proteins Encoded on the Staphylococcus aureus Chromosome , 2014, Antimicrobial Agents and Chemotherapy.

[205]  G. Jacoby,et al.  Citrobacter spp. as a Source of qnrB Alleles , 2011, Antimicrobial Agents and Chemotherapy.

[206]  Xilin Zhao,et al.  Quinolones: Action and Resistance Updated , 2009, Current topics in medicinal chemistry.

[207]  P. Nordmann,et al.  Transfer of quinolone resistance gene qnrA1 to Escherichia coli through a 50 kb conjugative plasmid resulting from the splitting of a 300 kb plasmid. , 2012, The Journal of antimicrobial chemotherapy.

[208]  S. Gracheck,et al.  Genetic relationship between soxRS and mar loci in promoting multiple antibiotic resistance in Escherichia coli , 1994, Antimicrobial Agents and Chemotherapy.

[209]  K. Poole,et al.  Antibiotic Inducibility of the mexXY Multidrug Efflux Operon of Pseudomonas aeruginosa: Involvement of the MexZ Anti-Repressor ArmZ , 2013, PloS one.

[210]  F. Yoshimura,et al.  A MATE Family Multidrug Efflux Transporter Pumps out Fluoroquinolones in Bacteroides thetaiotaomicron , 2001, Antimicrobial Agents and Chemotherapy.

[211]  G. Jacoby,et al.  Interaction of the Plasmid-Encoded Quinolone Resistance Protein Qnr with Escherichia coli DNA Gyrase , 2005, Antimicrobial Agents and Chemotherapy.

[212]  H. Nikaido,et al.  Mechanisms of RND multidrug efflux pumps. , 2009, Biochimica et biophysica acta.

[213]  Ting Huang,et al.  Characterization of plasmids carrying oqxAB in bla(CTX-M)-negative Escherichia coli isolates from food-producing animals. , 2014, Microbial drug resistance.

[214]  G. Kaatz,et al.  Mutagenesis and Modeling To Predict Structural and Functional Characteristics of the Staphylococcus aureus MepA Multidrug Efflux Pump , 2012, Journal of bacteriology.

[215]  E. Cambau,et al.  Trend of plasmid-mediated quinolone resistance genes at the Children's Hospital in Tunisia. , 2014, Journal of medical microbiology.

[216]  K. Poole,et al.  Multiple antibiotic resistance in Pseudomonas aeruginosa: evidence for involvement of an efflux operon , 1993, Journal of bacteriology.

[217]  L. Grinius,et al.  NorA Functions as a Multidrug Efflux Protein in both Cytoplasmic Membrane Vesicles and Reconstituted Proteoliposomes , 2002, Journal of bacteriology.

[218]  G. Jacoby,et al.  Temporal Appearance of Plasmid-Mediated Quinolone Resistance Genes , 2009, Antimicrobial Agents and Chemotherapy.

[219]  G. Jacoby,et al.  QnrS1 structure-activity relationships. , 2014, The Journal of antimicrobial chemotherapy.

[220]  F. Daschner,et al.  Plasmid-Mediated Quinolone Resistance in Isolates Obtained in German Intensive Care Units , 2005, Antimicrobial Agents and Chemotherapy.

[221]  G. Jacoby,et al.  Cold Shock Induces qnrA Expression in Shewanella algae , 2010, Antimicrobial Agents and Chemotherapy.

[222]  F. Hu,et al.  Coexistence of qnrB4 and qnrS1 in a clinical strain of Klebsiella pneumoniae , 2008, Acta Pharmacologica Sinica.

[223]  S. Hagen,et al.  Structure-Activity Relationships of the Quinolone Antibacterials in the New Millennium: Some Things Change and Some Do Not , 2003 .

[224]  R. Xia,et al.  qnrVC-Like Gene Located in a Novel Complex Class 1 Integron Harboring the ISCR1 Element in an Aeromonas punctata Strain from an Aquatic Environment in Shandong Province, China , 2010, Antimicrobial Agents and Chemotherapy.

[225]  K. Kam,et al.  Plasmid-mediated resistance to ciprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotype Enteritidis in Hong Kong. , 2005, The Journal of antimicrobial chemotherapy.

[226]  L. Gutmann,et al.  A Plasmid-Borne Shewanella algae Gene, qnrA3, and Its Possible Transfer In Vivo between Kluyvera ascorbata and Klebsiella pneumoniae , 2008, Journal of bacteriology.

[227]  E. Cambau,et al.  Low selection of topoisomerase mutants from strains of Escherichia coli harbouring plasmid-borne qnr genes. , 2008, The Journal of antimicrobial chemotherapy.

[228]  P. Loewen,et al.  Triclosan Can Select for an AdeIJK-Overexpressing Mutant of Acinetobacter baumannii ATCC 17978 That Displays Reduced Susceptibility to Multiple Antibiotics , 2014, Antimicrobial Agents and Chemotherapy.

[229]  N. Gordon,et al.  Novel variants of the Smqnr family of quinolone resistance genes in clinical isolates of Stenotrophomonas maltophilia. , 2010, Journal of Antimicrobial Chemotherapy.

[230]  X. Xiong,et al.  Structural insights into quinolone antibiotic resistance mediated by pentapeptide repeat proteins: conserved surface loops direct the activity of a Qnr protein from a Gram-negative bacterium , 2011, Nucleic acids research.

[231]  Q. C. Truong-Bolduc,et al.  Posttranslational Modification Influences the Effects of MgrA on norA Expression in Staphylococcus aureus , 2008, Journal of bacteriology.

[232]  S. Nakamura,et al.  Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli , 1990, Antimicrobial Agents and Chemotherapy.

[233]  S. Sørensen,et al.  Conjugative Plasmid Conferring Resistance to Olaquindox , 2003, Antimicrobial Agents and Chemotherapy.

[234]  Hiroshi Nikaido,et al.  The Challenge of Efflux-Mediated Antibiotic Resistance in Gram-Negative Bacteria , 2015, Clinical Microbiology Reviews.

[235]  N. Woodford,et al.  Complete Nucleotide Sequences of Plasmids pEK204, pEK499, and pEK516, Encoding CTX-M Enzymes in Three Major Escherichia coli Lineages from the United Kingdom, All Belonging to the International O25:H4-ST131 Clone , 2009, Antimicrobial Agents and Chemotherapy.

[236]  G. Jacoby,et al.  Mechanistic and structural analysis of aminoglycoside N-acetyltransferase AAC(6')-Ib and its bifunctional, fluoroquinolone-active AAC(6')-Ib-cr variant. , 2008, Biochemistry.

[237]  B. Berçot,et al.  Mobile Insertion Cassette Elements Found in Small Non-Transmissible Plasmids in Proteeae May Explain qnrD Mobilization , 2014, PloS one.

[238]  K. Kimura,et al.  New Plasmid-Mediated Fluoroquinolone Efflux Pump, QepA, Found in an Escherichia coli Clinical Isolate , 2007, Antimicrobial Agents and Chemotherapy.

[239]  C. Higgins,et al.  The homodimeric ATP‐binding cassette transporter LmrA mediates multidrug transport by an alternating two‐site (two‐cylinder engine) mechanism , 2000, The EMBO journal.