Five lectures on optimal transportation: Geometry, regularity and applications
暂无分享,去创建一个
[1] H. Lawson,et al. Split Special Lagrangian Geometry , 2010, 1007.0450.
[2] N. Trudinger,et al. Interior C 2,α Regularity for Potential Functions in Optimal Transportation , 2009 .
[3] N. Trudinger. Isoperimetric inequalities for quermassintegrals , 1994 .
[4] Qinglan Xia. The formation of a tree leaf , 2007 .
[5] I. Ekeland. An optimal matching problem , 2003, math/0308206.
[6] R. McCann. Exact solutions to the transportation problem on the line , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[7] J. Rochet. A necessary and sufficient condition for rationalizability in a quasi-linear context , 1987 .
[8] S. Rosen,et al. Monopoly and product quality , 1978 .
[9] R. McCann. A convexity theory for interacting gases and equilibrium crystals , 1994 .
[10] Nicola Gigli,et al. On the inverse implication of Brenier-Mccann theorems and the structure of (P 2 (M),W 2 ) , 2011 .
[11] Properties of the solutions to the Monge–Ampère equation , 2004 .
[12] J. A. Cuesta-Albertos,et al. A characterization for the solution of the Monge--Kantorovich mass transference problem , 1993 .
[13] ℒ-optimal transportation for Ricci flow , 2009 .
[14] J. Rochet,et al. Ironing, Sweeping, and Multidimensional Screening , 1998 .
[15] C. Villani. Topics in Optimal Transportation , 2003 .
[16] L. Kantorovich. On the Translocation of Masses , 2006 .
[17] Lei Zhu,et al. Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.
[18] G. Buttazzo,et al. Characterization of optimal shapes and masses through Monge-Kantorovich equation , 2001 .
[19] Dario Cordero-Erausquin. Sur le transport de mesures périodiques , 1999 .
[20] R. McCann. Existence and uniqueness of monotone measure-preserving maps , 1995 .
[21] Yuxin Ge. Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds ∗ , 2008 .
[22] M. Cullen. A Mathematical Theory of Large-scale Atmosphere/ocean Flow , 2006 .
[23] J. Lott. Optimal transport and Perelman’s reduced volume , 2008, 0804.0343.
[24] P. Bassanini,et al. Elliptic Partial Differential Equations of Second Order , 1997 .
[25] On strict convexity and $C^1$ regularity of potential functions in optimal transportation , 2007, math/0702807.
[26] T. Koopmans. Optimum Utilization of the Transportation System , 1949 .
[27] M. Cullen,et al. Properties of the Lagrangian Semigeostrophic Equations , 1989 .
[28] SUR LA DISTANCE DE DEUX LOIS DANS LE CAS VECTORIEL , 1994 .
[29] P. Bernard,et al. Optimal mass transportation and Mather theory , 2004, math/0412299.
[30] L. Rüschendorf. On c-optimal random variables , 1996 .
[31] W. Gangbo,et al. MICHELL TRUSSES AND LINES OF PRINCIPAL ACTION , 2008 .
[32] L. Caffarelli. The regularity of mappings with a convex potential , 1992 .
[33] L. Kantorovitch,et al. On the Translocation of Masses , 1958 .
[34] M. Knott,et al. Note on the optimal transportation of distributions , 1987 .
[35] Xu-jia Wang. On the design of a reflector antenna II , 2004 .
[36] S. Rachev,et al. Mass transportation problems , 1998 .
[37] C. Villani. Optimal Transport: Old and New , 2008 .
[38] V. Levin. Abstract Cyclical Monotonicity and Monge Solutions for the General Monge–Kantorovich Problem , 1999 .
[39] Robert J. McCann,et al. Optimal transportation, topology and uniqueness , 2010, 1008.4419.
[40] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces , 2006 .
[41] R. McCann. STABLE ROTATING BINARY STARS AND FLUID IN A TUBE , 2006 .
[42] C. Villani,et al. Regularity of optimal transport in curved geometry: The nonfocal case , 2010 .
[43] Jiakun Liu. Hölder regularity of optimal mappings in optimal transportation , 2009 .
[44] Thierry Champion,et al. The ∞-Wasserstein Distance: Local Solutions and Existence of Optimal Transport Maps , 2008, SIAM J. Math. Anal..
[45] R. McCann,et al. Continuity, curvature, and the general covariance of optimal transportation , 2007, 0712.3077.
[46] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[47] Inégalité de Prékopa—Leindler sur la sphère , 1999 .
[48] V. Milman,et al. Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .
[49] C. Villani,et al. Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .
[50] G. Perelman. The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.
[51] L. Ambrosio,et al. Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .
[52] Paul W.Y. Lee,et al. New examples on spaces of negative sectional curvature satisfying Ma-Trudinger-Wang conditions , 2009 .
[53] Gabriela Chefneux,et al. HABILITATION THESIS , 2013 .
[54] L. Caffarelli. Boundary regularity of maps with convex potentials , 1992 .
[55] A. Figalli,et al. A mass transportation approach to quantitative isoperimetric inequalities , 2010 .
[56] A. Figalli,et al. Continuity of optimal transport maps and convexity of injectivity domains on small deformations of 𝕊2 , 2009 .
[57] N. Trudinger,et al. On the Monge mass transfer problem , 2001 .
[58] M. Spence. Competitive and optimal responses to signals: An analysis of efficiency and distribution , 1974 .
[59] R. McCann,et al. Pseudo-Riemannian geometry calibrates optimal transportation , 2009, 0907.4962.
[60] Hiroshi Tanaka. An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas , 1973 .
[61] G. Loeper. On the regularity of solutions of optimal transportation problems , 2009 .
[62] L. Kantorovich. On a Problem of Monge , 2006 .
[63] A. Figalli,et al. On the Shape of Liquid Drops and Crystals in the Small Mass Regime , 2011 .
[64] Cédric Villani,et al. On the Ma–Trudinger–Wang curvature on surfaces , 2010 .
[65] R. McCann,et al. Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs , 2001 .
[66] Philippe Delanoë. Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator , 1991 .
[67] A. Plakhov. Newton's problem of the body of minimal averaged resistance , 2004 .
[68] G. Burton. TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .
[69] M. Cullen,et al. An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis , 1984 .
[70] G. Minty. Monotone (nonlinear) operators in Hilbert space , 1962 .
[71] J. A. Cuesta,et al. Notes on the Wasserstein Metric in Hilbert Spaces , 1989 .
[72] P. Monteiro,et al. Optimal selling mechanisms for multiproduct monopolists: incentive compatibility in the presence of budget constraints , 1998 .
[73] G. Loeper. On the regularity of maps solutions of optimal transportation problems , 2005 .
[74] C. Villani,et al. Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .
[75] R. McCann. Equilibrium Shapes for Planar Crystals in an External Field , 1998 .
[76] F. Otto. THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .
[77] Alessio Figalli,et al. Continuity and injectivity of optimal maps for non-negatively cross-curved costs , 2009 .
[78] G. Loeper. Regularity of Optimal Maps on the Sphere: the Quadratic Cost and the Reflector Antenna , 2013, 1301.6229.
[79] W. Gangbo,et al. The geometry of optimal transportation , 1996 .
[80] Alessio Figalli,et al. Regularity of optimal transport maps on multiple products of spheres , 2010, 1006.1957.
[81] R. McCann,et al. Prekopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport , 2006 .
[82] R. McCann,et al. Rectifiability of Optimal Transportation Plans , 2010, Canadian Journal of Mathematics.
[83] Alessio Figalli,et al. When is multidimensional screening a convex program? , 2009, J. Econ. Theory.
[84] J. Morel,et al. Optimal Transportation Networks: Models and Theory , 2008 .
[85] R. McCann,et al. A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .
[86] Xu-jia Wang. On the design of a reflector antenna , 1996 .
[87] SMOOTH OPTIMAL TRANSPORTATION ON HYPERBOLIC SPACE , 2009 .
[88] C. Villani,et al. Nearly Round Spheres Look Convex , 2012 .
[89] Karl-Theodor Sturm,et al. Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .
[90] L. Rüschendorf. Bounds for distributions with multivariate marginals , 1991 .
[91] Giovanni Alberti,et al. A geometrical approach to monotone functions in R n , 2007 .
[92] J. Neumann. Zur Theorie der Gesellschaftsspiele , 1928 .
[93] R. Rockafellar. Characterization of the subdifferentials of convex functions , 1966 .
[94] R. McCann. Polar factorization of maps on Riemannian manifolds , 2001 .
[95] Conformal geometry and fully nonlinear equations , 2006, math/0609158.
[96] G. M.,et al. Partial Differential Equations I , 2023, Applied Mathematical Sciences.
[97] Counterexamples to continuity of optimal transportation on positively curved Riemannian manifolds , 2007, 0709.1653.
[98] C. Villani,et al. A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .
[99] N. Trudinger,et al. Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .
[100] M. Armstrong. Multiproduct Nonlinear Pricing , 1996 .
[101] W. Gangbo,et al. Optimal maps in Monge's mass transport problem , 1995 .
[102] S. Bianchini,et al. The Monge Problem for Distance Cost in Geodesic Spaces , 2011, 1103.2796.
[103] Balls have the worst best Sobolev inequalities. Part II: variants and extensions , 2007 .
[104] S. Kakutani. A generalization of Brouwer’s fixed point theorem , 1941 .
[105] L-optimal transportation for Ricci flow , 2007 .
[106] W. Gangbo,et al. Shape recognition via Wasserstein distance , 2000 .
[107] G. Carlier. A general existence result for the principal-agent problem with adverse selection , 2001 .
[108] Local semiconvexity of Kantorovich potentials on non-compact manifolds , 2011 .
[109] A. Figalli,et al. C1 regularity of solutions of the Monge–Ampère equation for optimal transport in dimension two , 2009 .
[110] M. Knott,et al. On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .
[111] Gautam Appa,et al. Linear Programming in Infinite-Dimensional Spaces , 1989 .
[112] G. Carlier,et al. Equilibrium structure of a bidimensional asymmetric city , 2007 .
[113] A. Figalli,et al. Optimal transportation on non-compact manifolds , 2007, 0711.4519.
[114] R. McCann. A Convexity Principle for Interacting Gases , 1997 .
[115] R. McCann,et al. Free boundaries in optimal transport and Monge-Ampere obstacle problems , 2010 .
[116] P. Chiappori,et al. Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness , 2007 .
[117] Y. Brenier. Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .
[118] R. McAfee,et al. Multidimensional incentive compatibility and mechanism design , 1988 .
[119] L. Ambrosio. Lecture Notes on Optimal Transport Problems , 2003 .
[120] C. Villani,et al. Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.
[121] L. Evans,et al. Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .
[122] J. Urbas. On the second boundary value problem for equations of Monge-Ampère type. , 1997 .
[123] Robert J. McCann,et al. Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular) , 2008, 0806.0351.
[124] Paul W. Y. Lee. New Computable Necessary Conditions for the Regularity Theory of Optimal Transportation , 2010, SIAM J. Math. Anal..
[125] S. Rachev,et al. A characterization of random variables with minimum L 2 -distance , 1990 .
[126] V. Sudakov,et al. Geometric Problems in the Theory of Infinite-dimensional Probability Distributions , 1979 .
[127] R. McCann,et al. Ricci flow, entropy and optimal transportation , 2010 .
[128] V. Oliker,et al. Optical Design of Single Reflector Systems and the Monge–Kantorovich Mass Transfer Problem , 2003 .
[129] L. Caffarelli. Boundary regularity of maps with convex potentials – II , 1996 .
[130] J. Mirrlees. An Exploration in the Theory of Optimum Income Taxation an Exploration in the Theory of Optimum Income Taxation L Y 2 , 2022 .
[131] R. Dudley. Probabilities and metrics : convergence of laws on metric spaces, with a view to statistical testing , 1976 .
[132] K. Mosler,et al. Stochastic orders and decision under risk , 1991 .
[133] Robert J. McCann,et al. The Ma–Trudinger–Wang curvature for natural mechanical actions , 2009 .
[134] L. Pascale,et al. The Monge problem in ${\mathbb R}^d$ , 2011 .
[135] Balls have the worst best Sobolev inequalities , 2005 .
[136] H. Kellerer. Duality theorems for marginal problems , 1984 .
[137] L. Rüschendorf. Optimal solutions of multivariate coupling problems , 1995 .
[138] N. Trudinger,et al. On the second boundary value problem for Monge-Ampère type equations and optimal transportation , 2006, math/0601086.
[139] L. Ambrosio,et al. A geometrical approach to monotone functions in $\mathbb R^n$ , 1999 .
[140] Karl-Theodor Sturm,et al. On the geometry of metric measure spaces. II , 2006 .