Five lectures on optimal transportation: Geometry, regularity and applications

In this series of lectures we introduce the Monge-Kantorovich problem of optimally transporting one distribution of mass onto another, where optimality is measured against a cost function c(x,y). Connections to geometry, inequalities, and partial differential equations will be discussed, focusing in particular on recent developments in the regularity theory for Monge-Ampere type equations. An application to microeconomics will also be described, which amounts to finding the equilibrium price distribution for a monopolist marketing a multidimensional line of products to a population of anonymous agents whose preferences are known only statistically.

[1]  H. Lawson,et al.  Split Special Lagrangian Geometry , 2010, 1007.0450.

[2]  N. Trudinger,et al.  Interior C 2,α Regularity for Potential Functions in Optimal Transportation , 2009 .

[3]  N. Trudinger Isoperimetric inequalities for quermassintegrals , 1994 .

[4]  Qinglan Xia The formation of a tree leaf , 2007 .

[5]  I. Ekeland An optimal matching problem , 2003, math/0308206.

[6]  R. McCann Exact solutions to the transportation problem on the line , 1999, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[7]  J. Rochet A necessary and sufficient condition for rationalizability in a quasi-linear context , 1987 .

[8]  S. Rosen,et al.  Monopoly and product quality , 1978 .

[9]  R. McCann A convexity theory for interacting gases and equilibrium crystals , 1994 .

[10]  Nicola Gigli,et al.  On the inverse implication of Brenier-Mccann theorems and the structure of (P 2 (M),W 2 ) , 2011 .

[11]  Properties of the solutions to the Monge–Ampère equation , 2004 .

[12]  J. A. Cuesta-Albertos,et al.  A characterization for the solution of the Monge--Kantorovich mass transference problem , 1993 .

[13]  ℒ-optimal transportation for Ricci flow , 2009 .

[14]  J. Rochet,et al.  Ironing, Sweeping, and Multidimensional Screening , 1998 .

[15]  C. Villani Topics in Optimal Transportation , 2003 .

[16]  L. Kantorovich On the Translocation of Masses , 2006 .

[17]  Lei Zhu,et al.  Optimal Mass Transport for Registration and Warping , 2004, International Journal of Computer Vision.

[18]  G. Buttazzo,et al.  Characterization of optimal shapes and masses through Monge-Kantorovich equation , 2001 .

[19]  Dario Cordero-Erausquin Sur le transport de mesures périodiques , 1999 .

[20]  R. McCann Existence and uniqueness of monotone measure-preserving maps , 1995 .

[21]  Yuxin Ge Regularity of optimal transportation maps on compact, locally nearly spherical, manifolds ∗ , 2008 .

[22]  M. Cullen A Mathematical Theory of Large-scale Atmosphere/ocean Flow , 2006 .

[23]  J. Lott Optimal transport and Perelman’s reduced volume , 2008, 0804.0343.

[24]  P. Bassanini,et al.  Elliptic Partial Differential Equations of Second Order , 1997 .

[25]  On strict convexity and $C^1$ regularity of potential functions in optimal transportation , 2007, math/0702807.

[26]  T. Koopmans Optimum Utilization of the Transportation System , 1949 .

[27]  M. Cullen,et al.  Properties of the Lagrangian Semigeostrophic Equations , 1989 .

[28]  SUR LA DISTANCE DE DEUX LOIS DANS LE CAS VECTORIEL , 1994 .

[29]  P. Bernard,et al.  Optimal mass transportation and Mather theory , 2004, math/0412299.

[30]  L. Rüschendorf On c-optimal random variables , 1996 .

[31]  W. Gangbo,et al.  MICHELL TRUSSES AND LINES OF PRINCIPAL ACTION , 2008 .

[32]  L. Caffarelli The regularity of mappings with a convex potential , 1992 .

[33]  L. Kantorovitch,et al.  On the Translocation of Masses , 1958 .

[34]  M. Knott,et al.  Note on the optimal transportation of distributions , 1987 .

[35]  Xu-jia Wang On the design of a reflector antenna II , 2004 .

[36]  S. Rachev,et al.  Mass transportation problems , 1998 .

[37]  C. Villani Optimal Transport: Old and New , 2008 .

[38]  V. Levin Abstract Cyclical Monotonicity and Monge Solutions for the General Monge–Kantorovich Problem , 1999 .

[39]  Robert J. McCann,et al.  Optimal transportation, topology and uniqueness , 2010, 1008.4419.

[40]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces , 2006 .

[41]  R. McCann STABLE ROTATING BINARY STARS AND FLUID IN A TUBE , 2006 .

[42]  C. Villani,et al.  Regularity of optimal transport in curved geometry: The nonfocal case , 2010 .

[43]  Jiakun Liu Hölder regularity of optimal mappings in optimal transportation , 2009 .

[44]  Thierry Champion,et al.  The ∞-Wasserstein Distance: Local Solutions and Existence of Optimal Transport Maps , 2008, SIAM J. Math. Anal..

[45]  R. McCann,et al.  Continuity, curvature, and the general covariance of optimal transportation , 2007, 0712.3077.

[46]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[47]  Inégalité de Prékopa—Leindler sur la sphère , 1999 .

[48]  V. Milman,et al.  Asymptotic Theory Of Finite Dimensional Normed Spaces , 1986 .

[49]  C. Villani,et al.  Contractions in the 2-Wasserstein Length Space and Thermalization of Granular Media , 2006 .

[50]  G. Perelman The entropy formula for the Ricci flow and its geometric applications , 2002, math/0211159.

[51]  L. Ambrosio,et al.  Gradient Flows: In Metric Spaces and in the Space of Probability Measures , 2005 .

[52]  Paul W.Y. Lee,et al.  New examples on spaces of negative sectional curvature satisfying Ma-Trudinger-Wang conditions , 2009 .

[53]  Gabriela Chefneux,et al.  HABILITATION THESIS , 2013 .

[54]  L. Caffarelli Boundary regularity of maps with convex potentials , 1992 .

[55]  A. Figalli,et al.  A mass transportation approach to quantitative isoperimetric inequalities , 2010 .

[56]  A. Figalli,et al.  Continuity of optimal transport maps and convexity of injectivity domains on small deformations of 𝕊2 , 2009 .

[57]  N. Trudinger,et al.  On the Monge mass transfer problem , 2001 .

[58]  M. Spence Competitive and optimal responses to signals: An analysis of efficiency and distribution , 1974 .

[59]  R. McCann,et al.  Pseudo-Riemannian geometry calibrates optimal transportation , 2009, 0907.4962.

[60]  Hiroshi Tanaka An inequality for a functional of probability distributions and its application to Kac's one-dimensional model of a Maxwellian gas , 1973 .

[61]  G. Loeper On the regularity of solutions of optimal transportation problems , 2009 .

[62]  L. Kantorovich On a Problem of Monge , 2006 .

[63]  A. Figalli,et al.  On the Shape of Liquid Drops and Crystals in the Small Mass Regime , 2011 .

[64]  Cédric Villani,et al.  On the Ma–Trudinger–Wang curvature on surfaces , 2010 .

[65]  R. McCann,et al.  Constructing optimal maps for Monge's transport problem as a limit of strictly convex costs , 2001 .

[66]  Philippe Delanoë Classical solvability in dimension two of the second boundary-value problem associated with the Monge-Ampère operator , 1991 .

[67]  A. Plakhov Newton's problem of the body of minimal averaged resistance , 2004 .

[68]  G. Burton TOPICS IN OPTIMAL TRANSPORTATION (Graduate Studies in Mathematics 58) By CÉDRIC VILLANI: 370 pp., US$59.00, ISBN 0-8218-3312-X (American Mathematical Society, Providence, RI, 2003) , 2004 .

[69]  M. Cullen,et al.  An Extended Lagrangian Theory of Semi-Geostrophic Frontogenesis , 1984 .

[70]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[71]  J. A. Cuesta,et al.  Notes on the Wasserstein Metric in Hilbert Spaces , 1989 .

[72]  P. Monteiro,et al.  Optimal selling mechanisms for multiproduct monopolists: incentive compatibility in the presence of budget constraints , 1998 .

[73]  G. Loeper On the regularity of maps solutions of optimal transportation problems , 2005 .

[74]  C. Villani,et al.  Generalization of an Inequality by Talagrand and Links with the Logarithmic Sobolev Inequality , 2000 .

[75]  R. McCann Equilibrium Shapes for Planar Crystals in an External Field , 1998 .

[76]  F. Otto THE GEOMETRY OF DISSIPATIVE EVOLUTION EQUATIONS: THE POROUS MEDIUM EQUATION , 2001 .

[77]  Alessio Figalli,et al.  Continuity and injectivity of optimal maps for non-negatively cross-curved costs , 2009 .

[78]  G. Loeper Regularity of Optimal Maps on the Sphere: the Quadratic Cost and the Reflector Antenna , 2013, 1301.6229.

[79]  W. Gangbo,et al.  The geometry of optimal transportation , 1996 .

[80]  Alessio Figalli,et al.  Regularity of optimal transport maps on multiple products of spheres , 2010, 1006.1957.

[81]  R. McCann,et al.  Prekopa-Leindler type inequalities on Riemannian manifolds, Jacobi fields, and optimal transport , 2006 .

[82]  R. McCann,et al.  Rectifiability of Optimal Transportation Plans , 2010, Canadian Journal of Mathematics.

[83]  Alessio Figalli,et al.  When is multidimensional screening a convex program? , 2009, J. Econ. Theory.

[84]  J. Morel,et al.  Optimal Transportation Networks: Models and Theory , 2008 .

[85]  R. McCann,et al.  A Riemannian interpolation inequality à la Borell, Brascamp and Lieb , 2001 .

[86]  Xu-jia Wang On the design of a reflector antenna , 1996 .

[87]  SMOOTH OPTIMAL TRANSPORTATION ON HYPERBOLIC SPACE , 2009 .

[88]  C. Villani,et al.  Nearly Round Spheres Look Convex , 2012 .

[89]  Karl-Theodor Sturm,et al.  Transport inequalities, gradient estimates, entropy and Ricci curvature , 2005 .

[90]  L. Rüschendorf Bounds for distributions with multivariate marginals , 1991 .

[91]  Giovanni Alberti,et al.  A geometrical approach to monotone functions in R n , 2007 .

[92]  J. Neumann Zur Theorie der Gesellschaftsspiele , 1928 .

[93]  R. Rockafellar Characterization of the subdifferentials of convex functions , 1966 .

[94]  R. McCann Polar factorization of maps on Riemannian manifolds , 2001 .

[95]  Conformal geometry and fully nonlinear equations , 2006, math/0609158.

[96]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[97]  Counterexamples to continuity of optimal transportation on positively curved Riemannian manifolds , 2007, 0709.1653.

[98]  C. Villani,et al.  A MASS-TRANSPORTATION APPROACH TO SHARP SOBOLEV AND GAGLIARDO-NIRENBERG INEQUALITIES , 2004 .

[99]  N. Trudinger,et al.  Regularity of Potential Functions of the Optimal Transportation Problem , 2005 .

[100]  M. Armstrong Multiproduct Nonlinear Pricing , 1996 .

[101]  W. Gangbo,et al.  Optimal maps in Monge's mass transport problem , 1995 .

[102]  S. Bianchini,et al.  The Monge Problem for Distance Cost in Geodesic Spaces , 2011, 1103.2796.

[103]  Balls have the worst best Sobolev inequalities. Part II: variants and extensions , 2007 .

[104]  S. Kakutani A generalization of Brouwer’s fixed point theorem , 1941 .

[105]  L-optimal transportation for Ricci flow , 2007 .

[106]  W. Gangbo,et al.  Shape recognition via Wasserstein distance , 2000 .

[107]  G. Carlier A general existence result for the principal-agent problem with adverse selection , 2001 .

[108]  Local semiconvexity of Kantorovich potentials on non-compact manifolds , 2011 .

[109]  A. Figalli,et al.  C1 regularity of solutions of the Monge–Ampère equation for optimal transport in dimension two , 2009 .

[110]  M. Knott,et al.  On Hoeffding-Fre´chet bounds and cyclic monotone relations , 1992 .

[111]  Gautam Appa,et al.  Linear Programming in Infinite-Dimensional Spaces , 1989 .

[112]  G. Carlier,et al.  Equilibrium structure of a bidimensional asymmetric city , 2007 .

[113]  A. Figalli,et al.  Optimal transportation on non-compact manifolds , 2007, 0711.4519.

[114]  R. McCann A Convexity Principle for Interacting Gases , 1997 .

[115]  R. McCann,et al.  Free boundaries in optimal transport and Monge-Ampere obstacle problems , 2010 .

[116]  P. Chiappori,et al.  Hedonic price equilibria, stable matching, and optimal transport: equivalence, topology, and uniqueness , 2007 .

[117]  Y. Brenier Polar Factorization and Monotone Rearrangement of Vector-Valued Functions , 1991 .

[118]  R. McAfee,et al.  Multidimensional incentive compatibility and mechanism design , 1988 .

[119]  L. Ambrosio Lecture Notes on Optimal Transport Problems , 2003 .

[120]  C. Villani,et al.  Ricci curvature for metric-measure spaces via optimal transport , 2004, math/0412127.

[121]  L. Evans,et al.  Differential equations methods for the Monge-Kantorovich mass transfer problem , 1999 .

[122]  J. Urbas On the second boundary value problem for equations of Monge-Ampère type. , 1997 .

[123]  Robert J. McCann,et al.  Towards the smoothness of optimal maps on Riemannian submersions and Riemannian products (of round spheres in particular) , 2008, 0806.0351.

[124]  Paul W. Y. Lee New Computable Necessary Conditions for the Regularity Theory of Optimal Transportation , 2010, SIAM J. Math. Anal..

[125]  S. Rachev,et al.  A characterization of random variables with minimum L 2 -distance , 1990 .

[126]  V. Sudakov,et al.  Geometric Problems in the Theory of Infinite-dimensional Probability Distributions , 1979 .

[127]  R. McCann,et al.  Ricci flow, entropy and optimal transportation , 2010 .

[128]  V. Oliker,et al.  Optical Design of Single Reflector Systems and the Monge–Kantorovich Mass Transfer Problem , 2003 .

[129]  L. Caffarelli Boundary regularity of maps with convex potentials – II , 1996 .

[130]  J. Mirrlees An Exploration in the Theory of Optimum Income Taxation an Exploration in the Theory of Optimum Income Taxation L Y 2 , 2022 .

[131]  R. Dudley Probabilities and metrics : convergence of laws on metric spaces, with a view to statistical testing , 1976 .

[132]  K. Mosler,et al.  Stochastic orders and decision under risk , 1991 .

[133]  Robert J. McCann,et al.  The Ma–Trudinger–Wang curvature for natural mechanical actions , 2009 .

[134]  L. Pascale,et al.  The Monge problem in ${\mathbb R}^d$ , 2011 .

[135]  Balls have the worst best Sobolev inequalities , 2005 .

[136]  H. Kellerer Duality theorems for marginal problems , 1984 .

[137]  L. Rüschendorf Optimal solutions of multivariate coupling problems , 1995 .

[138]  N. Trudinger,et al.  On the second boundary value problem for Monge-Ampère type equations and optimal transportation , 2006, math/0601086.

[139]  L. Ambrosio,et al.  A geometrical approach to monotone functions in $\mathbb R^n$ , 1999 .

[140]  Karl-Theodor Sturm,et al.  On the geometry of metric measure spaces. II , 2006 .