Homogenization Method for Strength and Inelastic Behavior of Nanocrystalline Materials

Abstract Homogenization techniques are used for modeling the so-called “breakdown” of the Hall–Petch law in the case of nanocrystalline (NC) materials. In this paper, the NC material is modeled as a composite material composed of two phases: the grain core (inclusion) and the grain boundaries (matrix). The deformation of the inclusion phase has a viscoplastic component that takes into account the dislocation glide mechanism as well as Coble creep. The boundary phase is modeled as an amorphous material with a perfect elastic–plastic behavior. An application of the model is developed on pure copper under tensile load. The results are compared with various experimental data.

[1]  H. V. Swygenhoven,et al.  Microscopic description of plasticity in computer generated metallic nanophase samples: a comparison between Cu and Ni , 1999 .

[2]  M. Ashby The deformation of plastically non-homogeneous materials , 1970 .

[3]  H. Conrad Grain size dependence of the plastic deformation kinetics in Cu , 2003 .

[4]  Simon R. Phillpot,et al.  Length-scale effects in the nucleation of extended dislocations in nanocrystalline Al by molecular-dynamics simulation , 2001 .

[5]  H. Zbib,et al.  Modeling of thermally activated dislocation glide and plastic flow through local obstacles , 2003 .

[6]  G. Taylor The Mechanism of Plastic Deformation of Crystals. Part I. Theoretical , 1934 .

[7]  Hyoung-Seop Kim,et al.  A model of the ductile–brittle transition of partially crystallized amorphous Al–Ni–Y alloys , 1999 .

[8]  N. Petch,et al.  The Cleavage Strength of Polycrystals , 1953 .

[9]  U. F. Kocks Laws for Work-Hardening and Low-Temperature Creep , 1976 .

[10]  Robert L. Coble,et al.  A Model for Boundary Diffusion Controlled Creep in Polycrystalline Materials , 1963 .

[11]  P. Sanders,et al.  Compressive yield strengths of nanocrystalline Cu and Pd , 1997 .

[12]  Yuri Estrin,et al.  Dislocation Theory Based Constitutive Modelling: Foundations and Applications , 1998 .

[13]  Y. Estrin,et al.  Plastic deformation behaviour of fine-grained materials , 2000 .

[14]  V. S. Raghunathan,et al.  Interface Structures in Nanocrystalline Materials , 2001 .

[15]  Y. Estrin,et al.  Constitutive modelling of strength and plasticity of nanocrystalline metallic materials , 2001 .

[16]  M. Meyers,et al.  On the effect of grain size on yield stress: extension into nanocrystalline domain , 2001 .

[17]  Mark Bush,et al.  The effects of grain size and porosity on the elastic modulus of nanocrystalline materials , 1999 .

[18]  R. J. Stokes,et al.  Work-softening in aluminium crystals , 1954 .

[19]  K. Jacobsen,et al.  A Maximum in the Strength of Nanocrystalline Copper , 2003, Science.

[20]  M. Meyers,et al.  Analytical and computational description of effect of grain size on yield stress of metals , 2001 .

[21]  E. Aifantis,et al.  On the “Anomalous” hardness of nanocrystalline materials , 1998 .

[22]  D. Parks,et al.  Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation , 2002 .

[23]  Jagdish Narayan,et al.  On the grain size softening in nanocrystalline materials , 2000 .

[24]  Paul G. Sanders,et al.  Elastic and tensile behavior of nanocrystalline copper and palladium , 1997 .

[25]  J. Weertman,et al.  Mechanical behavior of nanocrystalline Cu and Pd , 1991 .

[26]  L. Takács,et al.  Mechanical response and modeling of fully compacted nanocrystalline iron and copper , 2000 .

[27]  J. D. Eshelby The determination of the elastic field of an ellipsoidal inclusion, and related problems , 1957, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[28]  Oleg D. Sherby,et al.  Grain boundary sliding and deformation mechanism maps , 1979 .

[29]  U. Messerschmidt,et al.  Generation of dislocations during plastic deformation , 2003 .

[30]  Conyers Herring,et al.  Diffusional Viscosity of a Polycrystalline Solid , 1950 .

[31]  L. Murr Strain-induced dislocation emission from grain boundaries in stainless steel , 1981 .

[32]  William E. Buhro,et al.  Mechanical properties of nanocrystalline copper produced by solution-phase synthesis , 1996 .

[33]  Mohammed Cherkaoui,et al.  Micromechanics modeling of composite with ductile matrix and shape memory alloy reinforcement , 2000 .

[34]  T. Nieh,et al.  Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel , 2002 .

[35]  Subra Suresh,et al.  Deformation of electrodeposited nanocrystalline nickel , 2003 .

[36]  K. A. Padmanabhan,et al.  Plastic deformation of nanocrystalline materials , 1997 .

[37]  Subra Suresh,et al.  Mechanical behavior of nanocrystalline metals and alloys , 2003 .

[38]  A. Nazarov On the pile-up model of the grain size-yield stress relation for nanocrystals , 1996 .

[39]  Peter M. Derlet,et al.  Length scale effects in the simulation of deformation properties of nanocrystalline metals , 2002 .

[40]  S. Phillpot,et al.  Deformation twinning in nanocrystalline Al by molecular-dynamics simulation , 2002 .