A Refinement of Cauchy-Schwarz Complexity, with Applications
暂无分享,去创建一个
[1] Ben Green,et al. AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.
[2] Good bounds in certain systems of true complexity $1$ , 2017, discrete Analysis.
[3] Shachar Lovett,et al. General systems of linear forms: equidistribution and true complexity , 2014, Electron. Colloquium Comput. Complex..
[4] T. Tao,et al. New bounds for Szemer\'edi's theorem, III: A polylogarithmic bound for $r_4(N)$ , 2017, 1705.01703.
[5] Ben Green,et al. Linear equations in primes , 2006, math/0606088.
[6] W. T. Gowers,et al. The true complexity of a system of linear equations , 2007, 0711.0185.
[7] W. T. Gowers,et al. Linear Forms and Higher-Degree Uniformity for Functions On $${\mathbb{F}^{n}_{p}}$$ , 2010, 1002.2208.
[8] W. T. Gowers,et al. A quantitative inverse theorem for the $U^4$ norm over finite fields , 2017, 1712.00241.
[9] Additive Combinatorics: Contents , 2006 .