The Overfull Conjecture and the Conformability Conjecture
暂无分享,去创建一个
[1] Abddn SANCHEZ-ARROYO,et al. Determining the total colouring number is np-hard , 1989, Discret. Math..
[2] Bruce A. Reed,et al. A Bound on the Total Chromatic Number , 1998, Comb..
[3] A. Hilton,et al. Regular Graphs of High Degree are 1‐Factorizable , 1985 .
[4] Anthony J. W. Hilton. Recent results on the total chromatic number , 1993, Discret. Math..
[5] Bruce A. Reed,et al. On Total Colorings of Graphs , 1993, J. Comb. Theory, Ser. B.
[6] Alexandr V. Kostochka,et al. The total coloring of a multigraph with maximal degree 4 , 1977, Discret. Math..
[7] Ian Holyer,et al. The NP-Completeness of Edge-Coloring , 1981, SIAM J. Comput..
[8] Anthony J. W. Hilton,et al. 1-factorizing Regular Graphs of High Degree - an Improved Bound , 1989, Discret. Math..
[9] Anthony J. W. Hilton. A total-chromatic number analogue of plantholt's theorem , 1990, Discret. Math..
[10] P. Erd Os,et al. On the maximal number of disjoint circuits of a graph , 2022, Publicationes Mathematicae Debrecen.
[11] Anthony J. W. Hilton,et al. Recent progress on edge-colouring graphs , 1987, Discret. Math..
[12] A. Hilton,et al. Star multigraphs with three vertices of maximum degree , 1986 .
[13] Anthony J. W. Hilton,et al. The total chromatic number of graphs having large maximum degree , 1993, Discret. Math..
[14] Anthony J. W. Hilton,et al. Some refinements of the total chromatic number conjecture. , 1988 .
[15] Bruce A. Reed,et al. Edge coloring regular graphs of high degree , 1997, Discret. Math..
[16] Lutz Volkmann,et al. Class 1 conditions depending on the minimum degree and the number of vertices of maximum degree , 1990, J. Graph Theory.
[17] V. G. Vizing. SOME UNSOLVED PROBLEMS IN GRAPH THEORY , 1968 .
[18] Anthony J. W. Hilton. Two conjectures on edge-colouring , 1989, Discret. Math..
[19] Hung-Lin Fu,et al. Total colorings of graphs of order 2n having maximum degree 2n−2 , 1992, Graphs Comb..