Optical and acoustic phonons in turbostratic and cubic boron nitride thin films on diamond substrates

We report an investigation of the bulk optical, bulk acoustic, and surface acoustic phonons in thin films of turbostratic boron nitride (t-BN) and cubic boron nitride (c-BN) grown on B-doped polycrystalline and single-crystalline diamond (001) and (111) substrates. The characteristics of different types of phonons were determined using Raman and Brillouin-Mandelstam light scattering spectroscopies. The atomic structure of the films was determined using high-resolution transmission electron microscopy (HRTEM) and correlated with the Raman and Brillouin-Mandelstam spectroscopy data. The HRTEM analysis revealed that the cubic boron nitride thin films consisted of a mixture of c-BN and t-BN phases, with c-BN being the dominant phase. It was found that while visible Raman spectroscopy provided information for characterizing the t-BN phase, it faced challenges in differentiating the c-BN phase either due to the presence of high-density defects or the overlapping of the Raman features with those from the B-doped diamond substrates. In contrast, Brillouin-Mandelstam spectroscopy clearly distinguishes the bulk longitudinal and surface acoustic phonons of the c-BN thin films grown on diamond substrates. Additionally, the angle-dependent surface Brillouin-Mandelstam scattering data show the peaks associated with the Rayleigh surface acoustic waves, which have higher phase velocities in c-BN films on diamond (111) substrates. These findings provide valuable insights into the phonon characteristics of the c-BN and diamond interfaces and have important implications for the thermal management of electronic devices based on ultra-wide-band-gap materials.

[1]  Tianli Feng,et al.  A Critical Review of Thermal Boundary Conductance across Wide and Ultrawide Bandgap Semiconductor Interfaces. , 2023, ACS applied materials & interfaces.

[2]  Xiangshan Chen,et al.  Cryogenic characteristics of graphene composites—evolution from thermal conductors to thermal insulators , 2023, Nature communications.

[3]  D. Bathen,et al.  Synthesis of Turbostratic Boron Nitride: Effect of Urea Decomposition , 2022, ACS omega.

[4]  A. Balandin,et al.  Properties for Thermally Conductive Interfaces with Wide Band Gap Materials , 2022, ACS applied materials & interfaces.

[5]  R. Nemanich,et al.  Growth and Characterization of Boron Nitride/Diamond Heterostructures , 2022, Microscopy and Microanalysis.

[6]  T. Grotjohn,et al.  The Effects of Boron Doping on the Bulk and Surface Acoustic Phonons in Single-Crystal Diamond , 2022, 2206.12000.

[7]  O. Bierwagen,et al.  Ultrawide-bandgap semiconductors: An overview , 2021, Journal of Materials Research.

[8]  J. L. Lyons,et al.  Prospects for n-type conductivity in cubic boron nitride , 2021, Applied Physics Letters.

[9]  Yuanwei Sun,et al.  Measuring phonon dispersion at an interface , 2021, Nature.

[10]  A. Balandin,et al.  Advances in Brillouin–Mandelstam light-scattering spectroscopy , 2021, Nature Photonics.

[11]  Xiaoqing Pan,et al.  Experimental observation of localized interfacial phonon modes , 2021, Nature Communications.

[12]  P. Hubík,et al.  New perspectives for heavily boron-doped diamond Raman spectrum analysis , 2020 .

[13]  Zhixiong Guo,et al.  High thermal conductance across c-BN/diamond interface , 2020 .

[14]  T. Shiga,et al.  Surface phonons limit heat conduction in thin films , 2020, Physical Review B.

[15]  Kenji Watanabe,et al.  Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride , 2020, Science.

[16]  Wentao Hu,et al.  Small onion-like BN leads to ultrafine-twinned cubic BN , 2019, Science China Materials.

[17]  P. Hubík,et al.  Determination of atomic boron concentration in heavily boron-doped diamond by Raman spectroscopy , 2019, Diamond and Related Materials.

[18]  Yue Zhang,et al.  Ultraviolet Detectors Based on Wide Bandgap Semiconductor Nanowire: A Review , 2018, Sensors.

[19]  T. Taniguchi,et al.  In- and out-of-plane longitudinal acoustic-wave velocities and elastic moduli in h-BN from Brillouin scattering measurements , 2018 .

[20]  G. Carlotti Elastic characterization of transparent and opaque films, multilayers and acoustic resonators by surface Brillouin scattering: A review , 2018, 1908.11106.

[21]  Hadis Morkoç,et al.  Recent Development of Boron Nitride towards Electronic Applications , 2017 .

[22]  R. Lake,et al.  Direct observation of confined acoustic phonon polarization branches in free-standing semiconductor nanowires , 2016, Nature Communications.

[23]  G. Wen,et al.  Fabrication and Raman scattering behavior of novel turbostratic BN thin films. , 2015 .

[24]  Alexander A. Balandin,et al.  Phononics in low-dimensional materials , 2012 .

[25]  K. Novoselov,et al.  Hunting for monolayer boron nitride: optical and Raman signatures. , 2010, Small.

[26]  B. Tittmann,et al.  Evaluation of film adhesion to substrates by means of surface acoustic wave dispersion , 2010 .

[27]  O. Auciello,et al.  Status review of the science and technology of ultrananocrystalline diamond (UNCD™) films and application to multifunctional devices , 2010 .

[28]  Shui-Tong Lee,et al.  Studying cubic boron nitride by Raman and infrared spectroscopies , 2010 .

[29]  M. Mermoux,et al.  Deep ultra-violet Raman imaging of CVD boron-doped and non-doped diamond films , 2008 .

[30]  B. Giordanengo,et al.  193 nm deep-ultraviolet solar-blind cubic boron nitride based photodetectors , 2008 .

[31]  C. Samantaray,et al.  Review of synthesis and properties of cubic boron nitride (c-BN) thin films , 2005 .

[32]  H. Boyen,et al.  Microstructure of the intermediate turbostratic boron nitride layer , 2005 .

[33]  John Robertson,et al.  Resonant Raman scattering in cubic and hexagonal boron nitride , 2005 .

[34]  Gang Chen Nanoscale energy transport and conversion : a parallel treatment of electrons, molecules, phonons, and photons , 2005 .

[35]  S. Prawer,et al.  Raman spectroscopy of diamond and doped diamond , 2004, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[36]  Shui-Tong Lee,et al.  Thick and adherent cubic boron nitride films grown on diamond interlayers by fluorine-assisted chemical vapor deposition , 2004 .

[37]  Kenji Watanabe,et al.  High pressure synthesis of UV-light emitting cubic boron nitride single crystals , 2003 .

[38]  J. Butler,et al.  A confocal Raman imaging study of an optically transparent boron-doped diamond electrode , 2002 .

[39]  S. Noor Mohammad,et al.  Electrical characteristics of thin film cubic boron nitride , 2002 .

[40]  D. Medlin,et al.  Review of advances in cubic boron nitride film synthesis , 1997 .

[41]  Besson,et al.  Optical properties of cubic boron nitride. , 1995, Physical review. B, Condensed matter.

[42]  P. Koidl,et al.  Brillouin light scattering on chemical‐vapor‐deposited polycrystalline diamond: Evaluation of the elastic moduli , 1991 .

[43]  G. Cheng,et al.  Brillouin scattering study of interface constituents in a-Si:H/a-SiNx:H superlattices , 1990 .

[44]  R. Pohl,et al.  Thermal boundary resistance , 1989 .

[45]  R. M. Chrenko Ultraviolet and infrared spectra of cubic boron nitride , 1974 .

[46]  W. Little The Transport of Heat Between Dissimilar Solids at Low Temperatures , 1959 .

[47]  Xingwang Zhang,et al.  Recent progress of boron nitrides , 2019, Ultra-Wide Bandgap Semiconductor Materials.

[48]  D. Ottesen,et al.  Substrate effects in cubic boron nitride film formation , 1996 .

[49]  F. Richter,et al.  The optical constants of cubic and hexagonal boron nitride thin films and their relation to the bulk optical constants , 1996 .

[50]  G. Briggs,et al.  Surface Brillouin Scattering—Extending Surface Wave Measurements to 20 GHz , 1995 .

[51]  J. R. Sandercock,et al.  Trends in brillouin scattering: Studies of opaque materials, supported films, and central modes , 1982 .

[52]  Richard M. Martin,et al.  Light scattering study of boron nitride microcrystals , 1981 .

[53]  E. L. Adler,et al.  Elastic Wave Propagation in Thin Layers , 1972 .