Oxygen from lunar regolith

In the year 2004 NASA declared its mission to prepare for a return of man to the moon as early as 2015 but no later than 2020, while continuing with robotic missions to Mars (NASA 2004). As a long-term goal, it was intended to establish permanent human presence on the moon and eventually send human missions to Mars. Although the future of US space exploration policy is now more uncertain, following a recent review (Augustine Commission 2009) and the cancellation of the Constellation Program (NASA 2010a), it remains true that an extended human presence on the moon is desirable for scientific and economic reasons (e.g., Crawford 2004; Spudis 2005). For this to become possible, significant progress is needed in the field of ‘living off the land’, or in situ resource utilisation (ISRU).

[1]  Derek J. Fray,et al.  Direct electrochemical reduction of titanium dioxide to titanium in molten calcium chloride , 2000, Nature.

[2]  Ian A. Crawford,et al.  The scientific case for renewed human activities on the Moon , 2004 .

[3]  Donald R. Sadoway,et al.  Performance Testing of Molten Regolith Electrolysis with Transfer of Molten Material for the Production of Oxygen and Metals on the Moon , 2010 .

[4]  Mahesh Anand,et al.  Lunar Water: A Brief Review , 2010 .

[5]  B. Jolliff,et al.  New views of the Moon , 2006 .

[6]  Paul D. Spudis The Moon and the New Presidential Space Vision , 2004 .

[7]  K. T. Kilby,et al.  Preparation and electrical properties of xCaRuO{sub 3}/(1 - x)CaTiO{sub 3} perovskite composites , 2009 .

[8]  Kelly Snook,et al.  Diviner Lunar Radiometer Observations of Cold Traps in the Moon’s South Polar Region , 2010, Science.

[9]  Stanley D. Rosenberg,et al.  Carbothermal Reduction of Lunar Materials for Oxygen Production on the Moon: Reduction of Lunar Simulants with Methane , 1996 .

[10]  D. Sadoway,et al.  Performance Testing of Molten Regolith Electrolysis and Transfer of Molten Material for Oxygen and Metals Production on the Moon , 2010 .

[11]  Derek J. Fray,et al.  Emerging molten salt technologies for metals production , 2001 .

[12]  D. Fray,et al.  The Electrochemical Reduction of Chromium Sesquioxide in Molten Calcium Chloride under Cathodic Potential Control , 2007 .

[13]  C. Senior,et al.  Lunar oxygen production by pyrolysis , 1992 .

[14]  William Marshall,et al.  Detection of Water in the LCROSS Ejecta Plume , 2010, Science.

[15]  Wolfgang Steurer Vapor phase pyrolysis , 1992 .

[16]  V. V. Busarev,et al.  Lunar bases and space activities of the 21st century , 1988 .

[17]  Evan C. Standish Design of a Molten Materials Handling Device for Support of Molten Regolith Electrolysis , 2010 .

[18]  Grant Heiken,et al.  Book-Review - Lunar Sourcebook - a User's Guide to the Moon , 1991 .

[19]  S. Jiao,et al.  Current efficiency studies for graphite and SnO2-based anodes for the electro-deoxidation of metal oxides , 2010 .

[20]  Fathi Habashi,et al.  Handbook of extractive metallurgy , 1997 .

[21]  F. Froes The titanium image: Bouncing back , 2001 .

[22]  Ramesh B. Malla,et al.  Earth and Space 2010 : Engineering, Science, Construction, and Operations in Challenging Environments , 2010 .

[23]  P. Spudis,et al.  Geology of Shackleton Crater and the south pole of the Moon , 2008 .

[24]  Peter A. Curreri,et al.  Process Demonstration For Lunar In Situ Resource Utilization-Molten Oxide Electrolysis (MSFC Independent Research and Development Project No. 5-81) , 2006 .

[25]  Lunar,et al.  The second conference lunar bases and space activities of the 21st century , 1985 .

[26]  L. Haskin,et al.  Oxygen From the Lunar Soil by Molten Silicate Electrolysis , 1992 .

[27]  D. Fray,et al.  The FFC-Cambridge Process for Titanium Metal Winning , 2010 .

[28]  C. W. Knudsen,et al.  Lunar Oxygen Production from Ilmenite , 1988 .

[29]  Russell J. Miller,et al.  Engineering, Construction, and Operations in Space III , 1992 .

[30]  R. S. J. Sparks,et al.  Modeling dense pyroclastic basal flows from collapsing columns , 2008 .

[31]  D. Alexander,et al.  The electro-deoxidation of dense titanium dioxide precursors in molten calcium chloride giving a new reaction pathway , 2011 .

[32]  Sanders D. Rosenberg,et al.  The onsite manufacture of propellant oxygen from lunar resources , 1992 .

[33]  D. Alexander,et al.  Microstructural kinetics of phase transformations during electrochemical reduction of titanium dioxide in molten calcium chloride , 2006 .

[34]  D. Fray,et al.  Determination of the kinetic pathway in the electrochemical reduction of titanium dioxide in molten calcium chloride , 2005 .

[35]  D. Fray,et al.  Reduction of Tantalum Pentoxide Using Graphite and Tin-Oxide-Based Anodes via the FFC-Cambridge Process , 2009 .

[36]  D. Rickman,et al.  Design and Specifications for the Highland Regolith Prototype Simulants NU-LHT-1M and -2M , 2010 .

[37]  L. Taylor,et al.  Petrogenesis of mare basalts - A record of lunar volcanism , 1992 .

[38]  D. Alexander,et al.  The electro-deoxidation of porous titanium dioxide precursors in molten calcium chloride under cathodic potential control , 2009 .

[39]  S. Jiao,et al.  Development of an Inert Anode for Electrowinning in Calcium Chloride–Calcium Oxide Melts , 2010 .

[40]  D. Sadoway,et al.  Development and Testing of High Surface Area Iridium Anodes for Molten Oxide Electrolysis , 2010 .