Pulsed laser-induced single event upset and charge collection measurements as a function of optical penetration depth

We use picosecond laser pulses to investigate single event upsets and related fundamental charge collection mechanisms in semiconductor microelectronic devices and circuits. By varying the laser wavelength the incident laser pulses deposit charge tracks of variable length, which form an approximation to the charge tracks resulting from high energy space particle strikes. We show how variation of the charge track length deposited by laser pulses allows the mechanisms of charge collection in semiconductor devices to be probed in a sensitive manner. With the aid of computer simulations, new insight into charge collection mechanisms for metal–semiconductor field effect transistor (MESFET) devices and heterojunction bipolar transistor devices is found. In the case of the MESFET we point out the correlation between charge collection in the device and the ensuing single event upset in the composite circuit. In favorable cases, we show how probing circuits with tunable laser pulses can estimate a charge collectio...

[1]  W. Augustyniak,et al.  Measurement of GaAs field‐effect transistor electronic impulse response by picosecond optical electronics , 1981 .

[2]  T.C. Holloway,et al.  A new edge-defined approach for submicrometer MOSFET fabrication , 1981, IEEE Electron Device Letters.

[3]  Harold R. Fetterman,et al.  Picosecond optoelectronic measurement of S parameters and optical response of an AlGaAs/GaAs HBT , 1990 .

[4]  A. B. Campbell,et al.  Single-event phenomena in GaAs devices and circuits , 1996 .

[5]  A. B. Campbell,et al.  Charge Transport by the Ion Shunt Effect , 1986, IEEE Transactions on Nuclear Science.

[6]  R. R. O'Brien,et al.  A field-funneling effect on the collection of alpha-particle-generated carriers in silicon devices , 1981, IEEE Electron Device Letters.

[7]  A. B. Campbell,et al.  Implications of the spatial dependence of the single-event-upset threshold in SRAMs measured with a pulsed laser , 1994 .

[8]  J. N. Bradford,et al.  A distribution function for ion track lengths in rectangular volumes , 1979 .

[9]  Edward Petersen,et al.  Geometrical factors in SEE rate calculations , 1993 .

[10]  Donald E. Cooper,et al.  Picosecond Optoelectronic Measurement of the High Frequency Scattering Parameters of a GaAs FET (Field Effect Transistor). , 1986 .

[11]  Yong-Hoon Yun,et al.  A temperature model for the GaAs MESFET , 1981, IEEE Transactions on Electron Devices.

[12]  Dale McMorrow,et al.  Proton and heavy ion upsets in GaAs MESFET devices , 1991 .

[13]  M. R. Pinto,et al.  High energy heavy-ion-induced single event transients in epitaxial structures , 1994 .

[14]  A. B. Campbell,et al.  Picosecond charge-collection dynamics in GaAs MESFETs (for space application) , 1992 .

[15]  A. B. Campbell,et al.  Single-event dynamics of high-performance HBTs and GaAs MESFETs , 1993 .

[16]  Yoshihiko Mizushima,et al.  High Speed Photoresponse Mechanism of a GaAs-MESFET , 1980 .

[17]  A. H. Johnston,et al.  Ion induced charge collection in GaAs MESFETs and its effect on SEU vulnerability , 1991 .

[18]  G. R. Hopkinson,et al.  Cobalt60 and proton radiation effects on large format, 2-D, CCD arrays for an Earth imaging application , 1992 .

[19]  S. Buchner,et al.  Charge-collection mechanisms of AlGaAs/GaAs HBTs , 1997 .

[20]  E. G. Stassinopoulos,et al.  Monitoring SEU parameters at reduced bias (CMOS SRAM) , 1993 .

[21]  Joseph M. Ballantyne,et al.  An integrated photoconductive detector and waveguide structure , 1980 .

[22]  J. F. Salzman,et al.  Charge collection and SEU sensitivity for Ga/As bipolar devices , 1989 .

[23]  P. S. Winokur,et al.  Three-dimensional simulation of charge collection and multiple-bit upset in Si devices , 1994 .

[24]  A. Johnston Charge generation and collection in p-n junctions excited with pulsed infrared lasers , 1993 .

[25]  A. B. Campbell,et al.  Analysis of multiple bit upsets (MBU) in CMOS SRAM , 1996 .

[26]  S. Buchner,et al.  Charge-collection characteristics of GaAs MESFETs fabricated with a low-temperature grown GaAs buffer layer: computer simulation , 1996 .

[27]  S. P. Buchner,et al.  Laboratory tests for single-event effects , 1996 .

[28]  E. Petersen,et al.  Cross section measurements and upset rate calculations , 1996 .

[29]  S. Buchner,et al.  Spatial and temporal dependence of SEU in a 64 K SRAM , 1992 .

[30]  A. B. Campbell,et al.  Charge Collection in Test Structures , 1983, IEEE Transactions on Nuclear Science.

[31]  A. B. Campbell,et al.  Pulsed laser-induced SEU in integrated circuits: a practical method for hardness assurance testing , 1990 .

[32]  J. C. Pickel,et al.  Cosmic Ray Induced in MOS Memory Cells , 1978, IEEE Transactions on Nuclear Science.

[33]  T. Calin,et al.  SEU-hardened storage cell validation using a pulsed laser , 1996 .

[34]  A. B. Campbell,et al.  Single event induced charge transport modeling of GaAs MESFETs , 1993 .

[35]  J. S. Blakemore Semiconducting and other major properties of gallium arsenide , 1982 .

[36]  A. B. Campbell,et al.  Charge collection from focussed picosecond laser pulses , 1988 .

[37]  A. B. Campbell,et al.  Ion induced charge collection in GaAs MESFETs , 1989 .

[38]  A. Peczalski,et al.  Charge-collection mechanisms of heterostructure FETs , 1994 .