Forecasting with unequally spaced data by a functional principal component approach

The Principal Component Regression model of multiple responses is extended to forccast a continuous-time stochastic process. Orthogonal projection on a subspace of trigonometric functions is applied in order to estimate the principal components using discrete-time observations from a sample of regular curves. The forecasts provided by this approach are compared with classical principal component regression on simulated data.

[1]  J. Ramsay,et al.  Principal components analysis of sampled functions , 1986 .

[2]  J. E. Jackson A User's Guide to Principal Components , 1991 .

[3]  Ana M. Aguilera,et al.  Approximation of estimators in the PCA of a stochastic process using B-splines , 1996 .

[4]  Petar Todorovic,et al.  An introduction to stochastic processes and their applications , 1993 .

[5]  Keinosuke Fukunaga,et al.  Introduction to Statistical Pattern Recognition , 1972 .

[6]  E. A. Sylvestre,et al.  Principal modes of variation for processes with continuous sample curves , 1986 .

[7]  Deville Méthodes statistiques et numériques de l'analyse harmonique , 1974 .

[8]  F. Riesz,et al.  Leçons d,analyse fonctionnelle , 1953 .

[9]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[10]  J. Dauxois,et al.  Asymptotic theory for the principal component analysis of a vector random function: Some applications to statistical inference , 1982 .

[11]  Jean-Claude Deville Analyse et prévision des séries chronologiques multiples non stationnaires , 1978 .

[12]  Thomas Mikosch,et al.  Introduction to Stochastic Processes and Their Applications. , 1993 .

[13]  Ana M. Aguilera,et al.  Computational approaches to estimation in the principal component analysis of a stochastic process , 1995 .

[14]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[15]  Denis Bosq,et al.  Modelization, Nonparametric Estimation and Prediction for Continuous Time Processes , 1991 .

[16]  P. Besse Approximation spline de l'analyse en composantes principales d'une variable aléatoire hilbertienne , 1991 .