TR-2003-010 Asymptotically tight bounds for some multicolored Ramsey numbers

Let H1,H2, . . . ,Hk+1 be a sequence of k + 1 finite, undirected, simple graphs. The (multicolored) Ramsey number r(H1,H2, . . . ,Hk+1) is the minimum integer r such that in every edge-coloring of the complete graph on r vertices by k + 1 colors, there is a monochromatic copy of Hi in color i for some 1 ≤ i ≤ k + 1. We describe a general technique that supplies tight lower bounds for several numbers r(H1,H2, . . . ,Hk+1) when k ≥ 2, and the last graph Hk+1 is the complete graph Km on m vertices. This technique enables us to determine the asymptotic behaviour of these numbers, up to a polylogarithmic factor, in various cases. In particular we show that r(K3,K3,Km) = Θ(mpoly logm), thus solving (in a strong form) a conjecture of Erdős and Sós raised in 1979. Another special case of our result implies that r(C4, C4,Km) = Θ(mpoly logm) and that r(C4, C4, C4,Km) = Θ(m/ logm). The proofs combine combinatorial and probabilistic arguments with spectral techniques and certain estimates of character sums.

[1]  Noga Alon,et al.  Coloring Graphs with Sparse Neighborhoods , 1999, J. Comb. Theory B.

[2]  James B. Shearer,et al.  On the Independence Number of Sparse Graphs , 1995, Random Struct. Algorithms.

[3]  János Komlós,et al.  A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.

[4]  Miklós Simonovits,et al.  Ramsey-Turán theory , 2001, Discret. Math..

[5]  R. M. Tanner Explicit Concentrators from Generalized N-Gons , 1984 .

[6]  Noga Alon,et al.  Constructive Bounds for a Ramsey-Type Problem , 1997, Graphs Comb..

[7]  Richard H. Schelp,et al.  On cycle - Complete graph ramsey numbers , 1978, J. Graph Theory.

[8]  János Komlós,et al.  A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..

[9]  N. Alon,et al.  The Probabilistic Method, Second Edition , 2000 .

[10]  Noga Alon,et al.  Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.

[11]  P. Erdos Extremal Problems in Number Theory , 2001 .

[12]  Felix Lazebnik,et al.  Polarities and 2k-cycle-free graphs , 1999, Discret. Math..

[13]  V. Sós,et al.  On a problem of K. Zarankiewicz , 1954 .

[14]  Noga Alon,et al.  The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.

[15]  A. J. W. Hilton,et al.  ERDÖS ON GRAPHS: HIS LEGACY OF UNSOLVED PROBLEMS , 1999 .

[16]  B. Bollobás,et al.  Extremal Graph Theory , 2013 .

[17]  Noga Alon,et al.  Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..

[18]  Lajos Rónyai,et al.  Norm-graphs and bipartite turán numbers , 1996, Comb..

[19]  Joel H. Spencer,et al.  Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..

[20]  H. Davenport Multiplicative Number Theory , 1967 .

[21]  Jeong Han Kim,et al.  The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.

[22]  Tibor Szabó On the spectrum of projective norm-graphs , 2003, Inf. Process. Lett..

[23]  Ramsey Theory,et al.  Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.