TR-2003-010 Asymptotically tight bounds for some multicolored Ramsey numbers
暂无分享,去创建一个
Vojtech Rödl | Noga Alon | N. Alon | V. Rödl
[1] Noga Alon,et al. Coloring Graphs with Sparse Neighborhoods , 1999, J. Comb. Theory B.
[2] James B. Shearer,et al. On the Independence Number of Sparse Graphs , 1995, Random Struct. Algorithms.
[3] János Komlós,et al. A Note on Ramsey Numbers , 1980, J. Comb. Theory, Ser. A.
[4] Miklós Simonovits,et al. Ramsey-Turán theory , 2001, Discret. Math..
[5] R. M. Tanner. Explicit Concentrators from Generalized N-Gons , 1984 .
[6] Noga Alon,et al. Constructive Bounds for a Ramsey-Type Problem , 1997, Graphs Comb..
[7] Richard H. Schelp,et al. On cycle - Complete graph ramsey numbers , 1978, J. Graph Theory.
[8] János Komlós,et al. A Dense Infinite Sidon Sequence , 1981, Eur. J. Comb..
[9] N. Alon,et al. The Probabilistic Method, Second Edition , 2000 .
[10] Noga Alon,et al. Norm-Graphs: Variations and Applications , 1999, J. Comb. Theory, Ser. B.
[11] P. Erdos. Extremal Problems in Number Theory , 2001 .
[12] Felix Lazebnik,et al. Polarities and 2k-cycle-free graphs , 1999, Discret. Math..
[13] V. Sós,et al. On a problem of K. Zarankiewicz , 1954 .
[14] Noga Alon,et al. The Probabilistic Method , 2015, Fundamentals of Ramsey Theory.
[15] A. J. W. Hilton,et al. ERDÖS ON GRAPHS: HIS LEGACY OF UNSOLVED PROBLEMS , 1999 .
[16] B. Bollobás,et al. Extremal Graph Theory , 2013 .
[17] Noga Alon,et al. Explicit Ramsey graphs and orthonormal labelings , 1994, Electron. J. Comb..
[18] Lajos Rónyai,et al. Norm-graphs and bipartite turán numbers , 1996, Comb..
[19] Joel H. Spencer,et al. Asymptotic lower bounds for Ramsey functions , 1977, Discret. Math..
[20] H. Davenport. Multiplicative Number Theory , 1967 .
[21] Jeong Han Kim,et al. The Ramsey Number R(3, t) Has Order of Magnitude t2/log t , 1995, Random Struct. Algorithms.
[22] Tibor Szabó. On the spectrum of projective norm-graphs , 2003, Inf. Process. Lett..
[23] Ramsey Theory,et al. Ramsey Theory , 2020, Set Theory and Foundations of Mathematics: An Introduction to Mathematical Logic.